Dendrite Growth in Single-Grain and Cyclic-Twinned Sn–3Ag–0.5Cu Solder Joints

S. Sun, C. M. Gourlay
{"title":"Dendrite Growth in Single-Grain and Cyclic-Twinned Sn–3Ag–0.5Cu Solder Joints","authors":"S. Sun, C. M. Gourlay","doi":"10.1007/s11661-024-07580-9","DOIUrl":null,"url":null,"abstract":"<p>The microstructure of electronic solder joints is generated by the solidification of a small volume of bulk undercooled liquid. Here, we study <i>β</i>-Sn dendrite growth in Sn–3Ag–0.5Cu in the specific geometry and nucleation conditions of ball grid array (BGA) solder joints by combining electron backscatter diffraction and imaging of microstructures. It is shown that, while <span>\\(\\langle 110\\rangle\\)</span> is the preferred dendrite growth direction, out-of-plane branching and growth with <span>\\(\\langle 11W\\rangle\\)</span> directions are important for allowing dendrites to fan out into the spheroidal volume of BGA joints due to the low symmetry of <i>β</i>-Sn. We find that the crystallographic orientation of <i>β</i>-Sn at the nucleation point plays a strong role in subsequent dendrite growth. In single-grain joints, dendrites are often unfavorably oriented for growth, resulting in different types of zig-zag dendrite growth. In cyclic-twinned joints, it is shown how competitive out-of-plane trunk growth between three dendrite orientations produces {101} boundaries and the characteristic beachball microstructure.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-024-07580-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The microstructure of electronic solder joints is generated by the solidification of a small volume of bulk undercooled liquid. Here, we study β-Sn dendrite growth in Sn–3Ag–0.5Cu in the specific geometry and nucleation conditions of ball grid array (BGA) solder joints by combining electron backscatter diffraction and imaging of microstructures. It is shown that, while \(\langle 110\rangle\) is the preferred dendrite growth direction, out-of-plane branching and growth with \(\langle 11W\rangle\) directions are important for allowing dendrites to fan out into the spheroidal volume of BGA joints due to the low symmetry of β-Sn. We find that the crystallographic orientation of β-Sn at the nucleation point plays a strong role in subsequent dendrite growth. In single-grain joints, dendrites are often unfavorably oriented for growth, resulting in different types of zig-zag dendrite growth. In cyclic-twinned joints, it is shown how competitive out-of-plane trunk growth between three dendrite orientations produces {101} boundaries and the characteristic beachball microstructure.

Abstract Image

单晶粒和循环双层锡-3Ag-0.5Cu 焊点中的树枝状晶生长
电子焊点的微观结构是由小体积的过冷液体凝固产生的。在这里,我们结合电子反向散射衍射和微观结构成像,研究了在球栅阵列(BGA)焊点的特定几何形状和成核条件下,β-Sn 树枝晶在 Sn-3Ag-0.5Cu 中的生长情况。结果表明,虽然 \(angle 110\rangle\) 是首选的树枝状晶生长方向,但由于 β-Sn 的对称性较低,平面外分支和 \(angle 11W\rangle\) 方向的生长对于树枝状晶向 BGA 焊点的球形体积扇出非常重要。我们发现,β-Sn 在成核点的晶体学取向在随后的树枝状晶生长中起着重要作用。在单晶粒接合点中,树枝状晶的取向往往不利于生长,从而导致不同类型的 "之 "字形树枝状晶生长。在循环孪晶接合中,研究表明了三种树枝晶取向之间竞争性的平面外树干生长是如何产生{101}边界和特征性滩球微观结构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信