Metals最新文献

筛选
英文 中文
Recent Progress on Atmospheric Corrosion of Field-Exposed Magnesium Alloys 现场暴露镁合金大气腐蚀的最新进展
IF 2.9 3区 材料科学
Metals Pub Date : 2024-09-02 DOI: 10.3390/met14091000
Mengqi Wang, Lihui Yang, Hao Liu, Xiutong Wang, Yantao Li, Yanliang Huang
{"title":"Recent Progress on Atmospheric Corrosion of Field-Exposed Magnesium Alloys","authors":"Mengqi Wang, Lihui Yang, Hao Liu, Xiutong Wang, Yantao Li, Yanliang Huang","doi":"10.3390/met14091000","DOIUrl":"https://doi.org/10.3390/met14091000","url":null,"abstract":"It is well known that the poor corrosion resistance of magnesium alloys is a key factor limiting their application. Field exposure is the most reliable means to evaluate the atmospheric corrosion performance of magnesium alloys. This article reviews the field exposure corrosion behavior of magnesium alloys in typical atmospheric environments (including the marine atmosphere, industrial atmosphere, etc.) in recent years. According to the literature review, it was found that there are significant regional differences in the atmospheric corrosion behavior of magnesium alloys, which is the result of the coupling of multiple factors in the atmospheric environment. By investigating the corrosion rate and corrosion products of different types of magnesium alloys in different environments, the corrosion mechanism of magnesium alloys in different environments was summarized. Specifically, environmental parameters such as atmospheric temperature, relative humidity, CO2, and chloride ion deposition rates in the marine atmospheric environment can affect the corrosion behavior of magnesium alloys. The corrosion of magnesium alloys in different industrial atmospheric environments is mainly affected by atmospheric temperature and relative humidity, as well as atmospheric pollutants (such as SO2, CO2, NO2) and dust. This review provides assistance to the development of new corrosion-resistant magnesium alloys.","PeriodicalId":18461,"journal":{"name":"Metals","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Ultrafast Heating on the Microstructure and Mechanical Properties of the 2.2 GPa Grade Hot Forming Steel 超快加热对 2.2 GPa 级热成型钢微观结构和力学性能的影响
IF 2.9 3区 材料科学
Metals Pub Date : 2024-09-02 DOI: 10.3390/met14091006
Mai Wang, Jiang Chang, Hongyi Wu, Zhenli Mi, Yanxin Wu, Qi Zhang
{"title":"The Effect of Ultrafast Heating on the Microstructure and Mechanical Properties of the 2.2 GPa Grade Hot Forming Steel","authors":"Mai Wang, Jiang Chang, Hongyi Wu, Zhenli Mi, Yanxin Wu, Qi Zhang","doi":"10.3390/met14091006","DOIUrl":"https://doi.org/10.3390/met14091006","url":null,"abstract":"The aim of the present work is to evaluate the effect of ultrafast heating on the microstructure and mechanical properties of hot forming steel. The initial microstructure utilized in this study was a cold-rolled microstructure, and the test steel was heated to full austenitization at a rate of 200 °C/s, followed by water quenching. It was observed that the ultrafast heating process significantly refines both the prior austenite grains and martensite laths while inheriting high-density dislocations from the initial cold-rolled microstructure. Consequently, the coupling mechanism between dislocation strengthening and grain refinement strengthening remarkably enhanced both the yield strength and ultimate tensile strength of the test steel. Eventually, the yield strength of the hot forming steel reached 1524 MPa, along with an ultimate tensile strength of 2221 MPa and uniform elongation of 5.2%.","PeriodicalId":18461,"journal":{"name":"Metals","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Laser Energy Density on the Properties of CoCrFeMnNi High-Entropy Alloy Coatings on Steel by Laser Cladding 激光能量密度对激光熔覆钢上钴铬铁镍高熵合金涂层性能的影响
IF 2.9 3区 材料科学
Metals Pub Date : 2024-09-01 DOI: 10.3390/met14090997
Chenchen Ding, Qi Zhang, Siyu Sun, Hongjun Ni, Yu Liu, Xiao Wang, Xiaofeng Wan, Hui Wang
{"title":"Effect of Laser Energy Density on the Properties of CoCrFeMnNi High-Entropy Alloy Coatings on Steel by Laser Cladding","authors":"Chenchen Ding, Qi Zhang, Siyu Sun, Hongjun Ni, Yu Liu, Xiao Wang, Xiaofeng Wan, Hui Wang","doi":"10.3390/met14090997","DOIUrl":"https://doi.org/10.3390/met14090997","url":null,"abstract":"High-entropy alloys (HEAs) have emerged as a novel class of materials with exceptional mechanical and corrosion properties, offering promising applications in various engineering fields. However, optimizing their performance through advanced manufacturing techniques, like laser cladding, remains an area of active research. This study investigated the effects of laser energy density on the mechanical and electrochemical properties of CoCrFeMnNi HEA coatings applied to Q235 substrates. Utilizing X-ray diffraction (XRD), this study confirmed the formation of a single-phase face-centered cubic (FCC) structure in all coatings. The hardness of the coatings peaked at 210 HV with a laser energy density of 50 J/mm2. Friction and wear tests highlighted that a coating applied at 60 J/mm2 exhibited the lowest wear rate, primarily due to adhesive and oxidative wear mechanisms, while the 55 J/mm2 coating showed increased hardness but higher abrasive wear. Electrochemical testing revealed superior corrosion resistance for the 60 J/mm2 coating, with a slow corrosion rate and minimal passivation tendency in contrast to the 55 J/mm2 coating. The comprehensive evaluation indicates that the HEA coating with an energy density of 60 J/mm2 exhibits exceptional wear and corrosion resistance.","PeriodicalId":18461,"journal":{"name":"Metals","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of Failure Due to Fatigue of Wire Arc Additive Manufacturing-Manufactured Product 线弧增材制造--制成品的疲劳失效预测
IF 2.9 3区 材料科学
Metals Pub Date : 2024-09-01 DOI: 10.3390/met14090995
Sergei Mancerov, Andrey Kurkin, Maksim Anosov, Dmitrii Shatagin, Mikhail Chernigin, Julia Mordovina
{"title":"Prediction of Failure Due to Fatigue of Wire Arc Additive Manufacturing-Manufactured Product","authors":"Sergei Mancerov, Andrey Kurkin, Maksim Anosov, Dmitrii Shatagin, Mikhail Chernigin, Julia Mordovina","doi":"10.3390/met14090995","DOIUrl":"https://doi.org/10.3390/met14090995","url":null,"abstract":"Currently, the focus of production is shifting towards the use of innovative manufacturing techniques and away from traditional methods. Additive manufacturing technologies hold great promise for creating industrial products. The industry aims to enhance the reliability of individual components and structural elements, as well as the ability to accurately anticipate component failure, particularly due to fatigue. This paper explores the possibility of predicting component failure in parts produced using the WAAM (wire arc additive manufacturing) method by employing fractal dimension analysis. Additionally, the impact of manufacturing imperfections and various heat treatment processes on the fatigue resistance of 30CrMnSi steel has been investigated. Fatigue testing of samples and actual components fabricated via the WAAM process was conducted in this study. The destruction of the examined specimens and products was predicted by evaluating the fractal dimensions of micrographs acquired at different stages of fatigue testing. It has been established that technological defects are more dangerous in terms of fatigue failure than microstructural ones. The correctly selected mode of heat treatment for metal after electric arc welding allows for a more homogeneous microstructure with a near-complete absence of microstructural defects. A comparison of the fractal dimension method with other damage assessment methods shows that it has high accuracy in predicting part failure and is less labor-intensive than other methods.","PeriodicalId":18461,"journal":{"name":"Metals","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Ag Doping on Wide-Emperature Tribological Properties of γ-Fe2O3@SiO2 Nanocomposite Coatings on Steel 掺银对钢铁上 γ-Fe2O3@SiO2 纳米复合涂层宽温摩擦学特性的影响
IF 2.9 3区 材料科学
Metals Pub Date : 2024-09-01 DOI: 10.3390/met14090996
Qunfeng Zeng, Shichuan Sun, Qian Jia
{"title":"Influence of Ag Doping on Wide-Emperature Tribological Properties of γ-Fe2O3@SiO2 Nanocomposite Coatings on Steel","authors":"Qunfeng Zeng, Shichuan Sun, Qian Jia","doi":"10.3390/met14090996","DOIUrl":"https://doi.org/10.3390/met14090996","url":null,"abstract":"γ-Fe2O3@SiO2-Ag nanocomposite coatings were prepared to investigate the lubrication performances of the nanocomposite coatings under a wide range of temperatures. The effect of Ag doping on the tribological properties of γ-Fe2O3@SiO2-Ag nanocomposite coatings was studied from room temperature to 600 °C, and the synergistic effect of Ag and oxides in the nanocomposite coatings was investigated. The coefficient of friction and the wear rate of γ-Fe2O3@SiO2-Ag nanocomposite coatings decrease with an increase in Ag content. The tribological properties of 24 wt.%Ag of the nanocomposite coatings are excellent. The stable coefficient of friction is 0.25 at 100 °C and the coefficient of friction is reduced to 0.05 at 500 °C. It was found that the synergistic effect of γ-Fe2O3 and Ag is helpful in improving the tribological properties of γ-Fe2O3@SiO2-Ag nanocomposite coatings over a wide temperature range. Ag plays a lubricating role at low and medium temperatures and oxides play a role in lubrication at high temperatures.","PeriodicalId":18461,"journal":{"name":"Metals","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Spherical θ Precipitation in 1.5 GPa Grade Tempered Martensitic Steel on the Occurrence of Delayed Fracture 1.5 GPa 级回火马氏体钢中球形 θ 沉淀对延迟断裂发生的影响
IF 2.9 3区 材料科学
Metals Pub Date : 2024-09-01 DOI: 10.3390/met14090999
Jin Ikegawa, Shiyu Wang, Ken Saito, Shinichi Kato, Kazuhiko Yamazaki, Shinsuke Suzuki
{"title":"Effect of Spherical θ Precipitation in 1.5 GPa Grade Tempered Martensitic Steel on the Occurrence of Delayed Fracture","authors":"Jin Ikegawa, Shiyu Wang, Ken Saito, Shinichi Kato, Kazuhiko Yamazaki, Shinsuke Suzuki","doi":"10.3390/met14090999","DOIUrl":"https://doi.org/10.3390/met14090999","url":null,"abstract":"The objective of this study is to clarify the effect of spherical cementite (θ) precipitation on the occurrence of delayed fracture in 1.5 GPa grade tempered martensitic steels. Constant load tests were performed with a cathodically charged specimen. A 1GPa-load was applied to the specimen, and cathodic charging was performed in 3% NaCl + 3 g/L NH4SCN solution. The specimen of steel without spherical θ did not fracture at the current density of 5 A·m−2 or even by increasing to 50 A·m−2. On the other hand, the specimen of steel with spherical θ fractured after 0.2 h at 5 A·m−2. The strain around the spherical θ after 30%-rolling observed by transmission electron backscatter diffraction showed that the local deformation around the spherical θ was larger than that in the whole measurement field by 3.05 × 1014 m−2 in terms of geometrically necessary dislocation density. In the hydrogen desorption curve by thermal desorption analysis, steel with spherical θ after 30%-rolling showed a larger hydrogen desorption peak around 250 °C than steel without spherical θ. The value of the activation energy of the 250 °C-peak was 109.2 kJ·mol−1. From these results, the 250 °C-peak is inferred to be hydrogen at the disordered interface of θ/tempered martensite. Transmission electron microscopy observation showed cracks and voids on the spherical θ near the delayed fracture surface. These results indicate that the precipitation of spherical θ facilitates the occurrence of delayed fracture. Cracks appear to form around spherical θ.","PeriodicalId":18461,"journal":{"name":"Metals","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Electromagnetic Field Assistance on the Wear and Corrosion Resistance of Nickel-Based Coating by Laser Cladding 电磁场辅助对激光熔覆镍基涂层耐磨性和耐腐蚀性的影响
IF 2.9 3区 材料科学
Metals Pub Date : 2024-09-01 DOI: 10.3390/met14090998
Dianxian Zhan, Dezhi Jiang, Yonggang Tong, Mingjun Zhang, Jian Zhang, Hongwei Hu, Zhenlin Zhang, Kaiming Wang
{"title":"Effect of Electromagnetic Field Assistance on the Wear and Corrosion Resistance of Nickel-Based Coating by Laser Cladding","authors":"Dianxian Zhan, Dezhi Jiang, Yonggang Tong, Mingjun Zhang, Jian Zhang, Hongwei Hu, Zhenlin Zhang, Kaiming Wang","doi":"10.3390/met14090998","DOIUrl":"https://doi.org/10.3390/met14090998","url":null,"abstract":"Offshore wind turbine generators usually demand higher requirements for key component materials because of the adverse working environment. Therefore, in this study, electromagnetic-assisted laser cladding technology was introduced to prepare the nickel-based composite coating on the Q345R matrix of wind turbine generator key component material. By means of Scanning Electron Microscope (SEM), X-ray diffraction (XRD), Energy Dispersive Spectrometer (EDS), the Vickers hardness tester, friction and wear tester, and electrochemical workstation, the effects of different magnetic field intensities on the macroscopic morphology, microstructure, phase composition, microhardness, wear resistance, and corrosion resistance of the coating were analyzed. The experimental results show that the addition of a magnetic field can effectively reduce the surface defects, improve the surface morphology, and not change the phase composition of the coating. With the increase in magnetic field intensity, the microstructure is gradually refined, and the average microhardness increases gradually, reaching a maximum of 944HV0.5 at 8 T. The wear resistance gradually increases with the increase in magnetic field intensity, especially when the magnetic field intensity reaches 12 T, the wear rate of the coating is reduced by 81.13%, and the corrosion current density is reduced by 43.7% compared with the coating without a magnetic field. The addition of an electromagnetic field can enhance the wear resistance and corrosion resistance of the nickel-based laser cladding layer.","PeriodicalId":18461,"journal":{"name":"Metals","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating the Cowper–Symonds Parameters for High-Strength Steel Using DIC Combined with Integral Measures of Deviation 使用 DIC 结合偏差积分法估算高强度钢的 Cowper-Symonds 参数
IF 2.9 3区 材料科学
Metals Pub Date : 2024-08-31 DOI: 10.3390/met14090992
Andrej Škrlec, Branislav Panić, Marko Nagode, Jernej Klemenc
{"title":"Estimating the Cowper–Symonds Parameters for High-Strength Steel Using DIC Combined with Integral Measures of Deviation","authors":"Andrej Škrlec, Branislav Panić, Marko Nagode, Jernej Klemenc","doi":"10.3390/met14090992","DOIUrl":"https://doi.org/10.3390/met14090992","url":null,"abstract":"Cowper–Symonds parameters were estimated for the complex-phase high-strength steel with a commercial name of SZBS800. The parameter estimation was based on a series of conventional tensile tests and unconventional high-strain rate experiments. The parameters were estimated using a reverse engineering approach. LS-Dyna was used for numerical simulations, and the material’s response was modelled using a piece-wise linear plasticity model with a visco-plastic formulation of the Cowper–Symonds material model. A multi-criteria cost function was defined and applied to obtain a response function for the parameters p and C. The cost function was modelled with a response surface, and the optimal parameters were estimated using a real-valued genetic algorithm. The main novelty and innovation of this article is the definition of a cost function that measures a deviation between the deformed geometry of the flat plate-like specimens and the results of the numerical simulations. The results are compared to the relevant literature. A critical evaluation of our results and references is another novelty of this article.","PeriodicalId":18461,"journal":{"name":"Metals","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Features of Increasing the Wear Resistance of 90CrSi Tool Steel Surface under Various Electrophysical Parameters of Plasma Electrolytic Treatment 等离子电解处理的各种电物理参数下提高 90CrSi 工具钢表面耐磨性的特点
IF 2.9 3区 材料科学
Metals Pub Date : 2024-08-31 DOI: 10.3390/met14090994
Sergey N. Grigoriev, Ivan V. Tambovskiy, Tatiana L. Mukhacheva, Irina A. Kusmanova, Pavel A. Podrabinnik, Nikolay O. Khmelevsky, Igor V. Suminov, Sergei A. Kusmanov
{"title":"Features of Increasing the Wear Resistance of 90CrSi Tool Steel Surface under Various Electrophysical Parameters of Plasma Electrolytic Treatment","authors":"Sergey N. Grigoriev, Ivan V. Tambovskiy, Tatiana L. Mukhacheva, Irina A. Kusmanova, Pavel A. Podrabinnik, Nikolay O. Khmelevsky, Igor V. Suminov, Sergei A. Kusmanov","doi":"10.3390/met14090994","DOIUrl":"https://doi.org/10.3390/met14090994","url":null,"abstract":"The paper investigates the feasibility of plasma electrolytic treatment (PET) of 90CrSi tool steel to enhance hardness and wear resistance. The influence of electrophysical parameters of PET (polarity of the active electrode, chemical-thermal treatment, and polishing modes) on the composition, structure, morphology, and tribological properties of the surface was studied. Tribological tests were carried out under dry friction conditions according to the shaft-bushing scheme with fixation of the friction coefficient and temperature in the friction contact zone, measurements of surface microgeometry parameters, morphological analysis of friction tracks, and weight wear. The formation of a surface hardened to 1110–1120 HV due to the formation of quenched martensite is shown. Features of nitrogen diffusion during anodic PET and cathodic PET were revealed, and diffusion coefficients were calculated. The wear resistance of the surface of 90CrSi steel increased by 5–9 times after anodic PET followed by polishing, by 16 times after cathodic PET, and up to 32 times after subsequent polishing. It is shown that in all cases, the violation of frictional bonds occurs through the plastic displacement of the material, and the wear mechanism is fatigue wear during dry friction and plastic contact.","PeriodicalId":18461,"journal":{"name":"Metals","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-Carbon Steel Formed by DRECE Method with Hot-Dip Zinc Galvanizing and Potentiodynamic Polarization Tests to Study Its Corrosion Behavior 用 DRECE 法成型的低碳钢经热浸锌镀锌和电位极化测试研究其腐蚀行为
IF 2.9 3区 材料科学
Metals Pub Date : 2024-08-31 DOI: 10.3390/met14090993
Jiřina Vontorová, Vlastimil Novák, Petra Váňová
{"title":"Low-Carbon Steel Formed by DRECE Method with Hot-Dip Zinc Galvanizing and Potentiodynamic Polarization Tests to Study Its Corrosion Behavior","authors":"Jiřina Vontorová, Vlastimil Novák, Petra Váňová","doi":"10.3390/met14090993","DOIUrl":"https://doi.org/10.3390/met14090993","url":null,"abstract":"The use of low-carbon unalloyed steel with minimal silicon content is widespread in structural steel and automotive applications due to its ease of manipulation. The mechanical properties of this steel can be significantly enhanced through severe plastic deformation (SPD) techniques. Our study focuses on the practical benefits of the dual rolling equal channel extrusion (DRECE) method, which strengthens the steel and has implications for material hardness and the thickness of subsequently applied hot-dip zinc galvanizing. Furthermore, the steel’s corrosion potential and current are investigated as a function of material hardness and thickness. The findings show a 20% increase in hardness HV 30 after the first run through the forming machine, with an additional 10% increase after the second run. Subsequent galvanizing leads to a further 1–12% increase in HV 30 value. Notably, the DRECE hardening demonstrates no statistically significant effect on the corrosion potential and current; however, the impact of galvanizing is as anticipated.","PeriodicalId":18461,"journal":{"name":"Metals","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信