Microbial Cell最新文献

筛选
英文 中文
Fecal gelatinase does not predict mortality in patients with alcohol-associated hepatitis. 粪便明胶酶不能预测酒精相关性肝炎患者的死亡率。
IF 4.1 3区 生物学
Microbial Cell Pub Date : 2024-08-26 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.08.836
Yongqiang Yang, Phillipp Hartmann, Bernd Schnabl
{"title":"Fecal gelatinase does not predict mortality in patients with alcohol-associated hepatitis.","authors":"Yongqiang Yang, Phillipp Hartmann, Bernd Schnabl","doi":"10.15698/mic2024.08.836","DOIUrl":"https://doi.org/10.15698/mic2024.08.836","url":null,"abstract":"<p><p>Alcohol-associated liver disease is highly prevalent worldwide, with alcohol-associated hepatitis as a severe form characterized by substantial morbidity, mortality, and economic burden. Gut bacterial dysbiosis has been linked to progression of alcohol-associated hepatitis. Fecal cytolysin secreted by the pathobiont <i>Enterococcus faecalis</i> (<i>E. faecalis</i>) is associated with increased mortality in patients with alcohol-associated hepatitis. Although gelatinase is considered a virulence factor in <i>E. faecalis</i>, its prevalence and impact on alcohol-associated hepatitis patient outcomes remains unclear. In this study, 20 out of 65 (30.8%) patients with alcohol-associated hepatitis tested positive for gelatinase in their stool. There were no significant differences in 30-day and 90-day mortality between gelatinase-positive and gelatinase-negative patients (p=0.97 and p=0.48, respectively). Fecal gelatinase had a low discriminative ability for 30-day mortality (area under the curve [AUC] 0.50 vs fibrosis-4 Index (FIB-4) 0.75) and 90-day mortality compared with other established liver disease markers (AUC 0.57 vs FIB-4 0.79 or 'age, serum bilirubin, INR, and serum creatinine' (ABIC) score 0.78). Furthermore, fecal gelatinase was not an important feature for 30-day or 90-day mortality per random forest analysis. Finally, gelatinase-positive patients with alcohol-associated hepatitis did not exhibit more severe liver disease compared with gelatinase-negative patients. In conclusion, fecal gelatinase does not predict mortality or disease severity in patients with alcohol-associated hepatitis from our cohort.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350238/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patterns of protein synthesis in the budding yeast cell cycle: variable or constant? 萌发酵母细胞周期中的蛋白质合成模式:可变还是恒定?
IF 4.1 3区 生物学
Microbial Cell Pub Date : 2024-08-20 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.08.835
Eun-Gyu No, Heidi M Blank, Michael Polymenis
{"title":"Patterns of protein synthesis in the budding yeast cell cycle: variable or constant?","authors":"Eun-Gyu No, Heidi M Blank, Michael Polymenis","doi":"10.15698/mic2024.08.835","DOIUrl":"10.15698/mic2024.08.835","url":null,"abstract":"<p><p>Proteins are the principal macromolecular constituent of proliferating cells, and protein synthesis is viewed as a primary metric of cell growth. While there are celebrated examples of proteins whose levels are periodic in the cell cycle (e.g., cyclins), the concentration of most proteins was not thought to change in the cell cycle, but some recent results challenge this notion. The 'bulk' protein is the focus of this article, specifically the rate of its synthesis, in the budding yeast <i>Saccharomyces cerevisiae</i>.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345583/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct detection of stringent alarmones (pp)pGpp using malachite green. 利用孔雀石绿直接检测严格报警酮 (pp)ppGpp。
IF 4.1 3区 生物学
Microbial Cell Pub Date : 2024-08-05 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.08.834
Muriel Schicketanz, Magdalena Petrová, Dominik Rejman, Margherita Sosio, Stefano Donadio, Yong Everett Zhang
{"title":"Direct detection of stringent alarmones (pp)pGpp using malachite green.","authors":"Muriel Schicketanz, Magdalena Petrová, Dominik Rejman, Margherita Sosio, Stefano Donadio, Yong Everett Zhang","doi":"10.15698/mic2024.08.834","DOIUrl":"10.15698/mic2024.08.834","url":null,"abstract":"<p><p>The alarmone (p)ppGpp serves as the signalling molecule for the bacterial universal stringent response and plays a crucial role in bacterial virulence, persistence, and stress adaptation. Consequently, there is a significant focus on developing new drugs that target and modulate the levels of (p)ppGpp as a potential strategy for controlling bacterial infections. However, despite the availability of various methods for detecting (p)ppGpp, a simple and straightforward detection method is needed. In this study, we demonstrated that malachite green, a well-established compound used for phosphate detection, can directly detect (p)ppGpp and its analogues esp., pGpp. By utilizing malachite green, we identified three new inhibitors of the hydrolase activity of SpoT, one of the two RelA-SpoT homolog (RSH) proteins responsible for making and hydrolyzing (p)ppGpp in <i>Escherichia coli</i>. These findings highlight the convenience and practicality of malachite green, which can be widely employed in high-throughput studies to investigate (pp)pGpp <i>in vitro</i> and discover novel regulators of RSH proteins.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11307201/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts. 了解人类疾病的分子机制:裂殖酵母的益处。
IF 4.1 3区 生物学
Microbial Cell Pub Date : 2024-08-02 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.08.833
Lajos Acs-Szabo, Laszlo Attila Papp, Ida Miklos
{"title":"Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts.","authors":"Lajos Acs-Szabo, Laszlo Attila Papp, Ida Miklos","doi":"10.15698/mic2024.08.833","DOIUrl":"10.15698/mic2024.08.833","url":null,"abstract":"<p><p>The role of model organisms such as yeasts in life science research is crucial. Although the baker's yeast (<i>Saccharomyces cerevisiae</i>) is the most popular model among yeasts, the contribution of the fission yeasts (<i>Schizosaccharomyces</i>) to life science is also indisputable. Since both types of yeasts share several thousands of common orthologous genes with humans, they provide a simple research platform to investigate many fundamental molecular mechanisms and functions, thereby contributing to the understanding of the background of human diseases. In this review, we would like to highlight the many advantages of fission yeasts over budding yeasts. The usefulness of fission yeasts in virus research is shown as an example, presenting the most important research results related to the Human Immunodeficiency Virus Type 1 (HIV-1) Vpr protein. Besides, the potential role of fission yeasts in the study of prion biology is also discussed. Furthermore, we are keen to promote the uprising model yeast <i>Schizosaccharomyces japonicus</i>, which is a dimorphic species in the fission yeast genus. We propose the hyphal growth of <i>S. japonicus</i> as an unusual opportunity as a model to study the invadopodia of human cancer cells since the two seemingly different cell types can be compared along fundamental features. Here we also collect the latest laboratory protocols and bioinformatics tools for the fission yeasts to highlight the many possibilities available to the research community. In addition, we present several limiting factors that everyone should be aware of when working with yeast models.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promoter methylation and increased expression of PD-L1 in patients with active tuberculosis. 活动性肺结核患者的启动子甲基化和 PD-L1 表达增加。
IF 4.1 3区 生物学
Microbial Cell Pub Date : 2024-07-29 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.07.832
Yen-Han Tseng, Sheng-Wei Pan, Jhong-Ru Huang, Chang-Ching Lee, Jung-Jyh Hung, Po-Kuei Hsu, Nien-Jung Chen, Wei-Juin Su, Yuh-Min Chen, Jia-Yih Feng
{"title":"Promoter methylation and increased expression of PD-L1 in patients with active tuberculosis.","authors":"Yen-Han Tseng, Sheng-Wei Pan, Jhong-Ru Huang, Chang-Ching Lee, Jung-Jyh Hung, Po-Kuei Hsu, Nien-Jung Chen, Wei-Juin Su, Yuh-Min Chen, Jia-Yih Feng","doi":"10.15698/mic2024.07.832","DOIUrl":"10.15698/mic2024.07.832","url":null,"abstract":"<p><p>The PD-1/PD-L1 pathway plays a pivotal role in T cell activity and is involved in the pathophysiology of <i>Mycobacterium tuberculosis</i> (MTB) infection. DNA methylation is a mechanism that modulates PD-L1 expression in cancer cells. However, its effect on PD-L1 expression in macrophages after MTB infection remains unknown. We prospectively enrolled patients with active tuberculosis (TB) and non-TB subjects. The expression of PD-L1 and methylation-related genes in peripheral blood mononuclear cells (PBMCs) were investigated and their correlation with disease severity and treatment outcomes were examined. PD-L1 promoter methylation status was evaluated using bisulfite sequencing. Immunohistochemistry (IHC) and immunofluorescence (IF) staining were used to visualize PD-L1- and TET-1-expressing cells in lung tissues from patients with TB and in macrophage cell lines with MTB-related stimulation. In total, 80 patients with active TB and 40 non-TB subjects were enrolled in the analysis. Patients with active TB had significantly higher expression of <i>PD-L1</i>, <i>DNMT3b</i>, <i>TET1</i>, <i>TET2</i>, and lower expression of <i>DNMT1</i>, compared to that in the non-TB subjects. The expression of <i>PD-L1</i> and <i>TET-1</i> was significantly associated with 1-month smear and culture non-conversion. IHC and IF staining demonstrated the co-localization of PD-L1- and TET-1-expressing macrophages in patients with pulmonary TB and in human macrophage cell lines after MTB-related stimulation. DNMT inhibition and <i>TET-1</i> knockdown in human macrophages increased and decreased <i>PD-L1</i> expression, respectively. Overall, <i>PD-L1</i> expression is increased in patients with active TB and is correlated with treatment outcomes. DNA methylation is involved in modulating <i>PD-L1</i> expression in human macrophages.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification methods of Candida albicans are independent irrespective of fungal morphology. 无论真菌形态如何,白色念珠菌的定量方法都是独立的。
IF 4.1 3区 生物学
Microbial Cell Pub Date : 2024-07-26 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.07.831
Amanda B Soares, Maria C de Albuquerque, Leticia M Rosa, Marlise I Klein, Ana C Pavarina, Paula A Barbugli, Livia N Dovigo, Ewerton G de O Mima
{"title":"Quantification methods of <i><b>Candida albicans</b></i> are independent irrespective of fungal morphology.","authors":"Amanda B Soares, Maria C de Albuquerque, Leticia M Rosa, Marlise I Klein, Ana C Pavarina, Paula A Barbugli, Livia N Dovigo, Ewerton G de O Mima","doi":"10.15698/mic2024.07.831","DOIUrl":"10.15698/mic2024.07.831","url":null,"abstract":"<p><p>The ability of <i>Candida albicans</i> to switch its morphology from yeast to filaments, known as polymorphism, may bias the methods used in microbial quantification. Here, we compared the quantification methods [cell/mL, colony forming units (CFU)/mL, and the number of nuclei estimated by viability polymerase chain reaction (vPCR)] of three strains of <i>C. albicans</i> (one reference strain and two clinical isolates) grown as yeast, filaments, and biofilms. Metabolic activity (XTT assay) was also used for biofilms. Comparisons between the methods were evaluated by agreement analyses [Intraclass and Concordance Correlation Coefficients (ICC and CCC, respectively) and Bland-Altman Plot] and Pearson Correlation (α = 0.05). Principal Component Analysis (PCA) was employed to visualize the similarities and differences between the methods. Results demonstrated a lack of agreement between all methods irrespective of fungal morphology/growth, even when a strong correlation was observed. Bland-Altman plot also demonstrated proportional bias between all methods for all morphologies/growth, except between CFU/mL X vPCR for yeasts and biofilms. For all morphologies, the correlation between the methods were strong, but without linear relationship between them, except for yeast where vPCR showed weak correlation with cells/mL and CFU/mL. XTT moderately correlated with CFU/mL and vPCR and weakly correlated with cells/mL. For all morphologies/growth, PCA showed that CFU/mL was similar to cells/mL and vPCR was distinct from them, but for biofilms vPCR became more similar to CFU/mL and cells/mL while XTT was the most distinct method. As conclusions, our investigation demonstrated that CFU/mL underestimated cells/mL, while vPCR overestimated both cells/mL and CFU/mL, and that the methods had poor agreement and lack of linear relationship, irrespective of <i>C. albicans</i> morphology/growth.1.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pathogenic Escherichia coli change the adhesion between neutrophils and endotheliocytes in the experimental bacteremia model. 致病性大肠杆菌改变了实验性菌血症模型中中性粒细胞和内皮细胞之间的粘附力。
IF 4.1 3区 生物学
Microbial Cell Pub Date : 2024-07-22 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.07.830
Svetlana N Pleskova, Nikolay A Bezrukov, Sergey Z Bobyk, Ekaterina N Gorshkova, Dmitri V Novikov
{"title":"Pathogenic <i>Escherichia coli</i> change the adhesion between neutrophils and endotheliocytes in the experimental bacteremia model.","authors":"Svetlana N Pleskova, Nikolay A Bezrukov, Sergey Z Bobyk, Ekaterina N Gorshkova, Dmitri V Novikov","doi":"10.15698/mic2024.07.830","DOIUrl":"10.15698/mic2024.07.830","url":null,"abstract":"<p><p>Septicemia caused by gram-negative bacteria is characterized by high death rate due to the endotoxin release. Since the septicemia depends not only on biochemical aspects of interactions in the system bloodstream, the study of mechanical interactions is also important. Using a model of experimental septicemia caused by <i>E. coli</i>, a hyperproduction of integrins CD11a and CD11b by neutrophils was shown, but this did not lead to the establishment of strong adhesion contacts between endothelial cells and neutrophils. On the contrary, adhesion force and work, as assessed by FS spectroscopy, were statistically significantly reduced in the presence of bacteria. It has also been shown that exposure to the pathogenic strain <i>E. coli</i> 321 increases the stiffness of the membrane-cytoskeleton complex of endothelial cells and bacteria significantly change their morphology on long-term observation. At the same time, we observed the death of neutrophils by apoptosis. Thus, it was shown that besides lipopolysaccharide release there are other pathogenic factors of <i>E. coli</i>: decrease in the interaction between neutrophil and endothelial cell caused by an increase of the endothelial cell rigidity and apoptotic death of neutrophils probably as a result of adhesins and exotoxin effects. Obtained results should be taken in mind during the therapy of septicemia.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263930/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arsenite treatment induces Hsp90 aggregatesdistinct from conventional stress granules in fission yeast. 亚砷酸盐处理可诱导裂变酵母产生不同于传统应激颗粒的 Hsp90 聚集体。
IF 4.1 3区 生物学
Microbial Cell Pub Date : 2024-07-19 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.07.829
Naofumi Tomimoto, Teruaki Takasaki, Reiko Sugiura
{"title":"Arsenite treatment induces Hsp90 aggregatesdistinct from conventional stress granules in fission yeast.","authors":"Naofumi Tomimoto, Teruaki Takasaki, Reiko Sugiura","doi":"10.15698/mic2024.07.829","DOIUrl":"10.15698/mic2024.07.829","url":null,"abstract":"<p><p>Various stress conditions, such as heat stress (HS) and oxidative stress, can cause biomolecular condensates represented by stress granules (SGs) via liquid-liquid phase separation. We have previously shown that Hsp90 forms aggregates in response to HS and that Hsp90 aggregates transiently co-localize with SGs as visualized by Pabp. Here, we showed that arsenite, one of the well-described SG-inducing stimuli, induces Hsp90 aggregates distinct from conventional SGs in fission yeast. Arsenite induced Hsp90 granules in a dose-dependent manner, and these granules were significantly diminished by the co-treatment with a ROS scavenger N-acetyl cysteine (NAC), indicating that ROS are required for the formation of Hsp90 granules upon arsenite stress. Notably, Hsp90 granules induced by arsenite do not overlap with conventional SGs as represented by eIF4G or Pabp, while HS-induced Hsp90 granules co-localize with SGs. Nrd1, an RNA-binding protein known as a HS-induced SG component, was recruited into Hsp90 aggregates but not to the conventional SGs upon arsenite stress. The non-phosphorylatable eIF2α mutants significantly delayed the Hsp90 granule formation upon arsenite treatment. Importantly, inhibition of Hsp90 by geldanamycin impaired the Hsp90 granule formation and reduced the arsenite tolerance. Collectively, arsenite stimulates two types of distinct aggregates, namely conventional SGs and a novel type of aggregates containing Hsp90 and Nrd1, wherein Hsp90 plays a role as a center for aggregation, and stress-specific compartmentalization of biomolecular condensates.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261669/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unresolved mystery of cyclic nucleotide second messengers, periplasmic acid phosphatases and bacterial natural competence. 环核苷酸第二信使、质周酸性磷酸酶和细菌自然能力的未解之谜。
IF 4.1 3区 生物学
Microbial Cell Pub Date : 2024-07-18 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.07.828
Kristina Kronborg, Yong Everett Zhang
{"title":"Unresolved mystery of cyclic nucleotide second messengers, periplasmic acid phosphatases and bacterial natural competence.","authors":"Kristina Kronborg, Yong Everett Zhang","doi":"10.15698/mic2024.07.828","DOIUrl":"10.15698/mic2024.07.828","url":null,"abstract":"<p><p>We recently characterized the competitive inhibition of cyclic AMP (cAMP) on three periplasmic acid phosphatases, AphA<sub>Hi</sub>, NadN<sub>Hi</sub>, and eP4 (Hel<sub>Hi</sub>), in <i>Haemophilus influenzae</i> Rd KW20. This inhibitory effect is vital for orchestrating the nutritional growth and competence development in KW20. Initially discovered in <i>Escherichia coli</i>, the function of AphA remains however obscure. This study investigates the regulation of <i>E. coli</i> <i>aphA</i> expression under nutrient starvation conditions. Using transcriptional reporters with truncated <i>aphA</i> promoter sequences, we found that starvations of carbon and phosphate, but not amino acid, stimulated <i>aphA</i> expression through distinct promoter regions. Deletions of <i>crp</i> or <i>cyaA</i> abolished <i>aphA</i> expression, confirming their crucial roles. Conversely, CytR deletion increased <i>aphA</i> expression, suggesting CytR's role as a repressor of <i>aphA</i> expression. Additionally, we extended the study of three other second messengers, i.e., cyclic GMP, cyclic UMP, and cyclic CMP, each sharing structural similarities with cAMP. Notably, cGMP competitively inhibits AphA<sub>Hi</sub>'s acid phosphatase activity akin to cAMP. In contrast, both cUMP and cCMP stimulate AphA<sub>Hi</sub>'s phosphatase activity in a concentration dependent manner. Collectively, these data imply a complicated connection between nucleotide metabolism, AphA, cyclic purine and pyrimidine nucleotides in bacterial nutrient uptake and natural competence.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterising glycosaminoglycans in human breastmilk and their potential role in infant health. 人类母乳中糖胺聚糖的特征及其对婴儿健康的潜在作用。
IF 4.1 3区 生物学
Microbial Cell Pub Date : 2024-07-04 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.07.827
Melissa Greenwood, Patricia Murciano-Martínez, Janet Berrington, Sabine L Flitsch, Sean Austin, Christopher Stewart
{"title":"Characterising glycosaminoglycans in human breastmilk and their potential role in infant health.","authors":"Melissa Greenwood, Patricia Murciano-Martínez, Janet Berrington, Sabine L Flitsch, Sean Austin, Christopher Stewart","doi":"10.15698/mic2024.07.827","DOIUrl":"10.15698/mic2024.07.827","url":null,"abstract":"<p><p>Human breastmilk is composed of many well researched bioactive components crucial for infant nutrition and priming of the neonatal microbiome and immune system. Understanding these components gives us crucial insight to the health and wellbeing of infants. Research surrounding glycosaminoglycans (GAGs) previously focused on those produced endogenously; however, recent efforts have shifted to understanding GAGs in human breastmilk. The structural complexity of GAGs makes detection and analysis complicated therefore, research is time consuming and limited to highly specialised teams experienced in carbohydrate analysis. In breastmilk, GAGs are present in varying quantities in four forms; chondroitin sulphate, heparin/heparan sulphate, dermatan sulphate and hyaluronic acid, and are hypothesised to behave similar to other bioactive components with suspected roles in pathogen defense and proliferation of beneficial gut bacteria. Chondroitin sulphate and heparin, being the most abundant, are expected to have the most impact on infant health. Their decreasing concentration over lactation further indicates their role and potential importance during early life.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信