Emily Hand, Indriati Hood-Pishchany, Toni Darville, Catherine M O'Connell
{"title":"Influence of cervicovaginal microbiota on <i>Chlamydia trachomatis</i> infection dynamics.","authors":"Emily Hand, Indriati Hood-Pishchany, Toni Darville, Catherine M O'Connell","doi":"10.15698/mic2025.04.848","DOIUrl":null,"url":null,"abstract":"<p><p>The cervicovaginal microbiome (CVM) is increasingly being considered as an important aspect of women's health, particularly in relation to the risk and progression of sexually transmitted infections (STIs). CVM composition varies significantly between individuals and is shaped by factors including diet, age, environmental exposures, and lifestyle. Understanding these influences may shed light on how microbial imbalances contribute to infection susceptibility and the development of reproductive health disorders. Five distinct community state types (CSTs) classify common CVM compositions. Most CSTs (I, II, III, V) are characterized by a dominant <i>Lactobacillus</i> species and are associated with better or neutral reproductive health, including reduced coincident detection of STIs such as <i>Chlamydia trachomatis</i>. In contrast, CST IV is composed of diverse, predominantly anaerobic, microbial species and is associated with CVM dysbiosis, bacterial vaginosis, and a heightened risk of STI acquisition. This review examines the complex interplay between the CVM, <i>C. trachomatis</i> infection, and host immune responses, highlighting the role of metabolites such as short-chain and long-chain fatty acids, indole, and iron in modulating pathogen survival and host defenses. Additionally, the impacts of CVM composition on <i>C. trachomatis</i> persistence, ascension, and clearance are discussed, alongside co-infection dynamics with pathogens like <i>Neisseria gonorrhoeae</i> and <i>Mycoplasma genitalium</i>.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"12 ","pages":"93-108"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042374/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15698/mic2025.04.848","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The cervicovaginal microbiome (CVM) is increasingly being considered as an important aspect of women's health, particularly in relation to the risk and progression of sexually transmitted infections (STIs). CVM composition varies significantly between individuals and is shaped by factors including diet, age, environmental exposures, and lifestyle. Understanding these influences may shed light on how microbial imbalances contribute to infection susceptibility and the development of reproductive health disorders. Five distinct community state types (CSTs) classify common CVM compositions. Most CSTs (I, II, III, V) are characterized by a dominant Lactobacillus species and are associated with better or neutral reproductive health, including reduced coincident detection of STIs such as Chlamydia trachomatis. In contrast, CST IV is composed of diverse, predominantly anaerobic, microbial species and is associated with CVM dysbiosis, bacterial vaginosis, and a heightened risk of STI acquisition. This review examines the complex interplay between the CVM, C. trachomatis infection, and host immune responses, highlighting the role of metabolites such as short-chain and long-chain fatty acids, indole, and iron in modulating pathogen survival and host defenses. Additionally, the impacts of CVM composition on C. trachomatis persistence, ascension, and clearance are discussed, alongside co-infection dynamics with pathogens like Neisseria gonorrhoeae and Mycoplasma genitalium.