Medicinal Chemistry最新文献

筛选
英文 中文
Design and Synthesis of (2,3-dichloro-4-(3-(substituted Phenyl)acryloyl) phenoxy) Substituted Carboxylic Acid as Potent Glutathione-s-transferase Inhibitors, Anti-breast-cancer Agents and Enhancing Therapeutic Efficacy of Anticancer Agents. (2,3-二氯-4-(3-(取代苯基)丙烯酰)苯氧基)取代羧酸作为谷胱甘肽转移酶抑制剂、抗乳腺癌药物的设计与合成及增强抗癌药物的疗效
IF 1.9 4区 医学
Medicinal Chemistry Pub Date : 2025-01-01 DOI: 10.2174/0115734064316508240911032442
Afreen Begum Abdul Qayyum, Syed Ayaz Ali, Santosh Namdeo Mokale
{"title":"Design and Synthesis of (2,3-dichloro-4-(3-(substituted Phenyl)acryloyl) phenoxy) Substituted Carboxylic Acid as Potent Glutathione-s-transferase Inhibitors, Anti-breast-cancer Agents and Enhancing Therapeutic Efficacy of Anticancer Agents.","authors":"Afreen Begum Abdul Qayyum, Syed Ayaz Ali, Santosh Namdeo Mokale","doi":"10.2174/0115734064316508240911032442","DOIUrl":"https://doi.org/10.2174/0115734064316508240911032442","url":null,"abstract":"<p><strong>Background: </strong>Ethacrynic acid is a dynamic agent holding alpha-beta unsaturated carbonyl unit in its structure which imparts superiority and extraordinary advantage of displaying multiple biological activities such as anticancer, antiviral, anti-malarial effect, diuretic effect and inhibits the Glutathione-s-transferase p1-1 enzyme which produces hindrance in the pathway of apoptosis. Ethacrynic acid is an inhibitor of Glutathione-s-transferases. EtA by itself act as an anticancer agent at higher concentration and also increases effectiveness of other compounds used in cancer treatment by preventing their detoxification, all these facts attracted our attention to develop and evaluate novel structural analogues of ethacrynic acid for their inhibitory effect on GSTs and anti-cancer activity in breast cancer.</p><p><strong>Objective: </strong>By attending rational drug design perspectives the research is aimed to develop and evaluate novel structural analogues of ethacrynic acid as Inhibitors of GSTs enzyme and with antibreast cancer activity.</p><p><strong>Methods: </strong>Designed compounds were synthesized as per convenient route shown in the scheme of synthesis. Molecular docking studies were done against GSTP1-1 (PDB:3HJO). Structures of novel synthesized molecules were confirmed by spectral characterization such as FTIR, <sup>1</sup>HNMR, <sup>13</sup>CNMR and Mass spectrometry. ADME studies were done to ensure safety and drug like properties of the compounds. Ten structural analogues of ethacrynic acid were synthesized and evaluated for their inhibitory effect on activity of Glutathione-s-transferases which was measured by performing assay method. <i>In-vitro</i> anti-breast cancer activity was done on MCF-7 and MDAMB-231 cell line by MTT assay.</p><p><strong>Results: </strong>Compound A3, A5 and A6 were found with greater inhibition of the activity of GSTs and maximum anti-proliferative activity in breast cancer.</p><p><strong>Conclusion: </strong>We have effectively developed novel compounds possessing structural resemblance with ethacrynic acid Compounds of the series has shown moderate to higher inhibitory effect on GSTs and anti-proliferative activity in breast cancer. The compound A3 was found to be promising agent with high level of potency in each biological response. The research studies presented here may be an enlightening path in development of novel therapeutic agents with high level of inhibition in the activity of GSTs and anti-breast cancer effect.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":"21 4","pages":"319-330"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144003371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Silico Analysis and Molecular Docking of Human Antimicrobial Peptides for Targeting Monkeypox Virus: Potential Therapeutic Implications of Histatin 5 Peptide. 针对猴痘病毒的人抗菌肽的硅分析和分子对接:组蛋白5肽的潜在治疗意义。
IF 1.9 4区 医学
Medicinal Chemistry Pub Date : 2025-01-01 DOI: 10.2174/0115734064312418240614104220
Deeksha Sarojini Devi Radhakumar, Sundar Thiyagarajan, Kaushik Rajaram, Rajesh Parsanathan
{"title":"<i>In Silico</i> Analysis and Molecular Docking of Human Antimicrobial Peptides for Targeting Monkeypox Virus: Potential Therapeutic Implications of Histatin 5 Peptide.","authors":"Deeksha Sarojini Devi Radhakumar, Sundar Thiyagarajan, Kaushik Rajaram, Rajesh Parsanathan","doi":"10.2174/0115734064312418240614104220","DOIUrl":"https://doi.org/10.2174/0115734064312418240614104220","url":null,"abstract":"<p><strong>Background: </strong>Monkeypox, a viral zoonotic disease akin to smallpox, has posed significant public health challenges, particularly in Africa. Recent outbreaks, including those in India, underscore the global threat it poses.</p><p><strong>Objective: </strong>In this study, we explore a novel approach to combat monkeypox virus (MPXV) infection by targeting its surface proteins, crucial for viral entry and fusion.</p><p><strong>Methods: </strong>Employing advanced computational techniques, we predict and refine the 3D structures of MPXV surface proteins and human antimicrobial peptides (hAMPs), specifically Histatin 1, 3, and their cleaved product, Histatin 5 (HIS 5). Further, molecular docking was carried out for MPXV surface proteins with hAMP HIS using HDOCK and Cluspro 2.0. Protein-peptide interactions were analyzed using PdbSum. Finally, the physicochemical properties of HIS peptides were determined using CamSol.</p><p><strong>Results: </strong>Our findings suggest HIS 5 as a potential therapeutic peptide against MPXV, warranting further investigation through <i>in vitro</i> and <i>in vivo</i> studies.</p><p><strong>Conclusion: </strong>This study sheds light on the efficacy of the HIS family in targeting MPXV and advocates for continued exploration of HIS 5's antiviral effects.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":"21 4","pages":"294-308"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143989701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological Evaluation of Bioisosterically Replaced and Triazole- Tethered Derivatives for Anticancer Therapy. 生物等构取代和三唑系栓衍生物抗癌治疗的药理学评价。
IF 1.9 4区 医学
Medicinal Chemistry Pub Date : 2025-01-01 DOI: 10.2174/0115734064320533240903062533
Dipesh Kumar, Salahuddin, Avijit Mazumder, Rajnish Kumar, Mohamed Jawed Ahsan, Mohammad Shahar Yar, Abbussalam, Pankaj Kumar Tyagi, M V N L Chaitanya
{"title":"Pharmacological Evaluation of Bioisosterically Replaced and Triazole- Tethered Derivatives for Anticancer Therapy.","authors":"Dipesh Kumar, Salahuddin, Avijit Mazumder, Rajnish Kumar, Mohamed Jawed Ahsan, Mohammad Shahar Yar, Abbussalam, Pankaj Kumar Tyagi, M V N L Chaitanya","doi":"10.2174/0115734064320533240903062533","DOIUrl":"https://doi.org/10.2174/0115734064320533240903062533","url":null,"abstract":"<p><p>Cancer has been the cause of the highest number of deaths in the human population despite the development and advancement in treatment therapies. The toxicity, drug resistance, and side effects of the current medicaments and therapies have left the void for more research and development. One of the possibilities to fill this void is by incorporating Triazole moieties within existing anticancer pharmacophores to develop new hybrid drugs with less toxicity and more potency. The placement of nitrogen in the triazole ring has endowed its characterization of being integrated with anticancer pharmacophores via bioisosteric replacement, click chemistry and organocatalyzed approaches. This review paper emphasizes the discussions from articles published from the early 2000s to the current 2020s about the triazole-based derivatives used in anticancer therapy, elaborating more on their chemical structures, target receptors or enzymes, mechanism of action, structure-activity relationships, different triazole-derived hybrid drugs under clinical and nonclinical trials, and recent advancements toward developing more potent and less toxic anticancer agents.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":"21 4","pages":"264-293"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143989702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Role of Natural Topoisomerase Inhibitors as Anticancer agents. 天然拓扑异构酶抑制剂作为抗癌药物的新作用。
IF 1.9 4区 医学
Medicinal Chemistry Pub Date : 2025-01-01 DOI: 10.2174/0115734064311729240911102646
Sanjeev Kumar Sahu, Manish Vyas, Pranav Kumar Prabhakar
{"title":"Emerging Role of Natural Topoisomerase Inhibitors as Anticancer agents.","authors":"Sanjeev Kumar Sahu, Manish Vyas, Pranav Kumar Prabhakar","doi":"10.2174/0115734064311729240911102646","DOIUrl":"10.2174/0115734064311729240911102646","url":null,"abstract":"<p><p>Topoisomerases I and II are the functionally two forms of DNA topoisomerase. In anticancer research, novel anticancer chemotherapeutical capable of blocking topoisomerase enzymes have been discovered. Most commonly, topoisomerase causes replication fork arrest and doublestrand breaks, and this is how a clinically successful topoisomerase-targeting anticancer medicines work. Unfortunately, this novel mechanism of action has been linked to the development of secondary malignancies as well as cardiotoxicity. The specific binding locations and mechanisms of topoisomerase poisons have been identified by studying the structures of topoisomerase-drug-DNA ternary complexes. Recent breakthroughs in science have revealed that isoform-specific human topoisomerase II poison could be created as safer anticancer drug molecules. It may also be able to develop catalytic inhibitors of topoisomerases by focusing on their inactive conformations. In addition to this, the discovery of new bacterial topoisomerase inhibitor molecules and regulatory proteins could lead to the discovery of new human topoisomerase inhibitors. As a result, biologists, organic chemists, and medicinal chemists worldwide have been identifying, designing, synthesizing, and testing a variety of novel topoisomerase-targeting bioactive compounds. This review focused on topoisomerase inhibitors, their mechanisms of action, and different types of topoisomerase inhibitors that have been developed during the last ten years.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":"21 3","pages":"195-210"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Silico Discovery and Predictive Modeling of Novel Acetylcholinesterase (AChE) Inhibitors for Alzheimer's Treatment. 用于阿尔茨海默氏症治疗的新型乙酰胆碱酯酶 (AChE) 抑制剂的硅学发现和预测模型。
IF 1.9 4区 医学
Medicinal Chemistry Pub Date : 2025-01-01 DOI: 10.2174/0115734064304100240511112619
Humaera Noor Suha, Md Shamim Hossain, Shofiur Rahman, Abdullah N Alodhayb, Md Mainul Hossain, Sarkar M A Kawsar, Raymond A Poirier, Kabir M Uddin
{"title":"<i>In Silico</i> Discovery and Predictive Modeling of Novel Acetylcholinesterase (AChE) Inhibitors for Alzheimer's Treatment.","authors":"Humaera Noor Suha, Md Shamim Hossain, Shofiur Rahman, Abdullah N Alodhayb, Md Mainul Hossain, Sarkar M A Kawsar, Raymond A Poirier, Kabir M Uddin","doi":"10.2174/0115734064304100240511112619","DOIUrl":"10.2174/0115734064304100240511112619","url":null,"abstract":"<p><strong>Introduction: </strong>Alzheimer's disease, akin to coronary artery disease of the heart, is a progressive brain disorder driven by nerve cell damage.</p><p><strong>Methods: </strong>This study utilized computational methods to explore 14 anti-acetylcholinesterase (AChE) derivatives (1 ̶ 14) as potential treatments. By scrutinizing their interactions with 11 essential target proteins (AChE, Aβ, BChE, GSK-3β, MAO B, PDE-9, Prion, PSEN-1, sEH, Tau, and TDP-43) and comparing them with established drugs such as donepezil, galantamine, memantine, and rivastigmine, ligand 14 emerged as notable. During molecular dynamics simulations, the protein boasting the strongest bond with the critical 1QTI protein and exceeding drug-likeness criteria also exhibited remarkable stability within the enzyme's pocket across diverse temperatures (300- 320 K). In addition, we utilized density functional theory (DFT) to compute dipole moments and molecular orbital properties, including assessing the thermodynamic stability of AChE derivatives.</p><p><strong>Result: </strong>This finding suggests a well-defined, potentially therapeutic interaction further supported by theoretical and future <i>in vitro</i> and <i>in vivo</i> investigations.</p><p><strong>Conclusion: </strong>Ligand 14 thus emerges as a promising candidate in the fight against Alzheimer's disease.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":"345-366"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of Potential FDA-Approved Inhibitors of SARS-CoV-2 Helicase Through a Multistep In silico Approach: A Promising Prospect for COVID-19 Treatment. 通过多步骤计算机方法鉴定fda批准的潜在SARS-CoV-2解旋酶抑制剂:COVID-19治疗的前景
IF 1.9 4区 医学
Medicinal Chemistry Pub Date : 2025-01-01 DOI: 10.2174/0115734064318640241112071225
Ibrahim H Eissa, Eslam B Elkaeed, Alaa Elwan, Aisha A Alsfouk, Ahmed M Metwaly
{"title":"Identification of Potential FDA-Approved Inhibitors of SARS-CoV-2 Helicase Through a Multistep <i>In silico</i> Approach: A Promising Prospect for COVID-19 Treatment.","authors":"Ibrahim H Eissa, Eslam B Elkaeed, Alaa Elwan, Aisha A Alsfouk, Ahmed M Metwaly","doi":"10.2174/0115734064318640241112071225","DOIUrl":"https://doi.org/10.2174/0115734064318640241112071225","url":null,"abstract":"<p><strong>Introduction: </strong>In this research aiming at combating COVID-19, we employed advanced computer-based methods to identify potential inhibitors of SARS-CoV-2 helicase from a pool of 3009 clinical and FDA-approved drugs.</p><p><strong>Methods: </strong>To narrow down the candidates, we focused on VXG, the helicase's co-crystallized ligand, and sought compounds with chemical structures akin to VXG within the examined drugs. The initial phase of our study involved molecular fingerprinting in addition to structure similarity studies.</p><p><strong>Results: </strong>Once the compounds most closely resembling VXG (29 compounds) were identified, we conducted various studies to investigate and validate the binding potential of these selected compounds to the protein's active site. The subsequent phase included molecular docking, molecular dynamic (MD) simulations, and MM-PBSA studies against the SARS-CoV-2 helicase (PDB ID: 5RMM).</p><p><strong>Conclusion: </strong>Based on our analyses, we identified nine compounds with promising potential as SARS-CoV-2 helicase inhibitors, namely aniracetam, aspirin, chromocarb, cinnamic acid, lawsone, loxoprofen, phenylglyoxylic acid, and antineoplaston A10. The findings of this research help the scientific community to further investigate these compounds, both <i>in vitro</i> and <i>in vivo</i>.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":"21 5","pages":"425-441"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144317311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Silico Studies of Phytoconstituents to Identify Potential Inhibitors for ERα Protein of Breast Cancer 通过植物成分的硅学研究确定乳腺癌 ERα 蛋白的潜在抑制剂
IF 2.3 4区 医学
Medicinal Chemistry Pub Date : 2024-09-06 DOI: 10.2174/0115734064301748240821081206
Veerachamy Alagarsamy, Mohaideen Thasthagir Sulthana, Bandi Narendhar, Viswas Raja Solomon, Periyasamy Parthiban, Aithamraju Satishchandra, Lalkote Aruna Jothi, Sankaranarayanan Murugesan
{"title":"In Silico Studies of Phytoconstituents to Identify Potential Inhibitors for ERα Protein of Breast Cancer","authors":"Veerachamy Alagarsamy, Mohaideen Thasthagir Sulthana, Bandi Narendhar, Viswas Raja Solomon, Periyasamy Parthiban, Aithamraju Satishchandra, Lalkote Aruna Jothi, Sankaranarayanan Murugesan","doi":"10.2174/0115734064301748240821081206","DOIUrl":"https://doi.org/10.2174/0115734064301748240821081206","url":null,"abstract":"Background: It is noteworthy that a wide array of plants and nutraceuticals are effectively utilized in the treatment of various cancers, demonstrating potent effects on different cancer targets with fewer side effects. Notably, estrogen alpha has been identified as a crucial factor in breast cancer cell proliferation. Agents that can antagonize its action hold promise as potential drug leads for the treatment of breast cancer. Objective: This study aims to discover and identify the potential inhibitors against the most influential ERα receptor by the computational approach of 134 phytochemicals from 17 medicinal plants by using in silico docking studies. Methods: The molecular docking was performedby a genetic algorithm using the Auto Dock Vina program, and the validation of docking was also performed by using Molecular Dynamic (MD) simulation by the Desmond tool of Schrödinger molecular modeling. Drug-likeness properties and toxicity studies were conducted using SWISS PRO. Results: The top ten highest binding energy phytochemicals ginicidin (-10.8 kcal/mol), lemairone (-10.5 kcal/mol), ixoratannin (-10.0 kcal/mol), hydnocarpine (-9.8 kcal/mol), arabelline (-9.8 kcal/mol), acutilobine E (-9.8 kcal/mol), chaparinone (-8.9 kcal/mol), plumieride coumerate (-8.8 kcal/mol), acutilobine C (-8.7 kcal/mol), and mezerein (-8.7 kcal/mol) were taken for drug-likeness test and ADMET profile prediction with the help of web-based server SWISS ADME and protoxII. Docking's study dictated that ten phytochemical constituents showed greater binding interactions than standard tamoxifen (-6.6 kcal/mol) towards the target protein ERα. MSD study was achieved for the most active 4 phytoconstituents, and the stability of the ligand-protein complex was confirmed and showed that all the four compounds possess comparatively stable ligand-protein complexes with ERα target as compared to the tamoxifen-ERα complex. Conclusion: Among the top ten phytochemicals, ginicidin (glycoside) formed a more stable complex and had greater binding affinity than standard tamoxifen with better safety profiles. Hence, this compound can be further studied for lead optimization and drug development for the treatment of breast cancer.","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":"12 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Preclinical Study on 4-Methyl-N-((4-(trifluoromethoxy)phenyl) carbamoyl)-benzenesulfonamide as a Potent Chemotherapeutic Agent against Liver and Pancreatic Carcinogenesis in Rats: Immunohistochemical and Histopathological Studies 4-甲基-N-((4-(三氟甲氧基)苯基)氨基甲酰基)-苯磺酰胺作为抑制大鼠肝癌和胰腺癌发生的强效化疗药物的临床前研究:免疫组织化学和组织病理学研究
IF 2.3 4区 医学
Medicinal Chemistry Pub Date : 2024-09-05 DOI: 10.2174/0115734064308484240820080153
Farid M. Sroor, Eman A. Younis, Hanan F. Aly
{"title":"A Preclinical Study on 4-Methyl-N-((4-(trifluoromethoxy)phenyl) carbamoyl)-benzenesulfonamide as a Potent Chemotherapeutic Agent against Liver and Pancreatic Carcinogenesis in Rats: Immunohistochemical and Histopathological Studies","authors":"Farid M. Sroor, Eman A. Younis, Hanan F. Aly","doi":"10.2174/0115734064308484240820080153","DOIUrl":"https://doi.org/10.2174/0115734064308484240820080153","url":null,"abstract":"Background: Alternative and complementary applications of newly synthesized chemicals have enhanced the prospect of finding curative treatments for liver hepatocarcinogenesis and pancreatic cancer. Methods: The current study investigated the curative effect of the newly synthesized drug 4- methyl-N-((4-(trifluoromethoxy) phenyl) carbamoyl) benzenesulfonamide (3) against diethyl nitrosamine (DEN) (50 mg/kg) and carbon tetrachloride (CCl4) (2 mg/kg)-induced hepatocellular carcinoma (HCC) and pancreatic cancer in male rats using doxorubicin as a reference drug. Results: The findings demonstrated that the DEN/CCl4 treatment produced oxidative stress, as evidenced by an increase in MDA and a reduction in GSH levels. A temporary decline in antioxidant and total antioxidant capacity (TAC) was detected. An increase in the levels of TNF-α and other inflammatory markers, interleukin-6 (IL-6) and B-cell lymphoma 2 (Bcl-2), was found. Our findings showed that the liver and pancreas had significantly higher levels of hepatocellular carcinoma biomarkers, namely α-fetoprotein and α-L-Fucosidase (α-FU). Changes in the biomarkers of hepatic function were also seen, with elevated levels of γ-glutamyltransferase (GGT), alkaline phosphatase (ALP), and transaminases (AST, ALT). Our findings were supported by immunohistochemical and pathological examinations, which revealed considerable improvement in liver and pancreatic tissues after treatment with medication 3 when compared to normal healthy rats. Conclusion: To summarize, the new synthetic medication 3 could be an effective chemotherapeutic method for treating DEN and CCl4-induced HCC and pancreatic cancer.","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":"65 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the Anti-cancer Potential of Oxadiazole Derivatives: A Comprehensive Exploration of Structure-Activity Relationships and Chemico-Biological Insights 揭示噁二唑衍生物的抗癌潜力:结构-活性关系和化学-生物学见解的全面探索
IF 2.3 4区 医学
Medicinal Chemistry Pub Date : 2024-09-02 DOI: 10.2174/0115734064329573240823113924
Sai Satyaprakash Mishra, Ajeya Samanta, Abhik Paul, Avik Maji, Tapan Kumar Maity
{"title":"Unveiling the Anti-cancer Potential of Oxadiazole Derivatives: A Comprehensive Exploration of Structure-Activity Relationships and Chemico-Biological Insights","authors":"Sai Satyaprakash Mishra, Ajeya Samanta, Abhik Paul, Avik Maji, Tapan Kumar Maity","doi":"10.2174/0115734064329573240823113924","DOIUrl":"https://doi.org/10.2174/0115734064329573240823113924","url":null,"abstract":"Background: Oxadiazole derivatives have shown significant potential as anti-cancer agents with low μM potencies. Some examples of drugs in this class include Raltegravir, Zibotentan, Setileuton (MK-0633), Nesapidil, Furamizole, and Tidazosin. The presence of the oxadiazole nucleus in Raltegravir exemplifies its importance in drug development, showcasing how specific structural motifs like oxadiazole can be strategically incorporated into molecules to achieve desired therapeutic effects. A large number of researchers across the globe have already developed and reported many oxadiazoles as potential anti-cancer medicines. Objective: Therefore, we tried to discuss the anti-cancer potentials of oxadiazole derivatives reported between 2019 and 2023. The design strategies, structure-activity relationship (SAR), and protein- inhibitor interactions of potential compounds on different targets have to be identified to help the medicinal chemists design new drug-likeness oxadiazole molecules for anti-cancer therapy. Similarly, the ADMET profiles of potential oxadiazoles using the in silico SWISSADME tool have to be studied. Results: We have highlighted the recently reported most potent oxadiazole derivatives as well as their hybrid compounds. The SAR study revealed that oxadiazole-linked pyridine, indazole, thiadiazine, quinoxaline, thiazolidine, indeno-pyrazole, thiophene, piperidine, benzimidazole, triazole, and sulphonamide showcased promising anti-cancer action. The chemico-biological interactions of potential oxadiazole compounds suggest good interactions with different amino acid residues that make them possible candidates for developing novel and effective anti-cancer therapies. Similarly, the in silico ADMET report suggested favourable physicochemical, pharmacokinetic, and druglikeness properties of potential oxadiazole compounds. Conclusion: Overall, these results will prove to be a helpful and vital tool for medicinal chemists investigating and working with oxadiazoles for anti-cancer action.","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":"8 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Diverse Therapeutic Applications of 1, 3-Thiazine: A Comprehensive Review 探索 1,3-噻嗪的多种治疗应用:全面回顾
IF 2.3 4区 医学
Medicinal Chemistry Pub Date : 2024-09-02 DOI: 10.2174/0115734064328915240827062052
Neetu Agrawal, Deepika Goyal, Shilpi Pathak
{"title":"Exploring the Diverse Therapeutic Applications of 1, 3-Thiazine: A Comprehensive Review","authors":"Neetu Agrawal, Deepika Goyal, Shilpi Pathak","doi":"10.2174/0115734064328915240827062052","DOIUrl":"https://doi.org/10.2174/0115734064328915240827062052","url":null,"abstract":"Thiazine, a six-membered heterocycle containing nitrogen and sulfur atoms, is of paramount importance due to its diverse biological functions and broad therapeutic effects. The pharmacological attributes of 1,3-thiazine span a wide range of activities, including antileukemic, antimycobacterial, anti-inflammatory, sedative, hypnotic, anti-influenza, antituberculosis, melanogenesis inhibition, BACE1 inhibition (with anti-Alzheimer's potential), growth promotion, neuroprotective, and anticonvulsant properties. Consequently, novel synthetic methodologies and the design of new 1,3-thiazine derivatives are significantly influenced by recent research findings. This comprehensive review explores both in vivo and in vitro preclinical studies on the biomedical and therapeutic applications of 1,3-thiazine, highlighting its extensive medical relevance. It is anticipated that derivatization strategies for 1,3-thiazine will open new avenues for the development of innovative biological agents. This review aims to engage researchers, stimulating the creation of promising new treatments and preventive measures for various diseases.","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":"27 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信