Exploring Phytochemicals as Potential Inhibitors of Cancer Cell Metabolic Pathways: A Computational Study.

IF 1.9 4区 医学 Q3 CHEMISTRY, MEDICINAL
Yagyesh Kapoor, Yasha Hasija
{"title":"Exploring Phytochemicals as Potential Inhibitors of Cancer Cell Metabolic Pathways: A Computational Study.","authors":"Yagyesh Kapoor, Yasha Hasija","doi":"10.2174/0115734064325567240930044647","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The objective of this study is to explore the therapeutic potential of phytochemicals in cancer cell metabolism by investigating their ability to inhibit key molecular targets involved in tumor growth and drug resistance.</p><p><strong>Methods: </strong>We evaluated specific phytochemicals against critical cancer-related targets such as GLS1, CKα, MGLL, IDH1, PDHK1, and PHGDH. Molecular docking methods were used to understand the binding interactions between phytochemicals and their selected targets. ADME (absorption, distribution, metabolism, and excretion) analysis and molecular dynamics (MD) simulations were conducted to assess pharmacokinetic properties and ligand-protein interaction dynamics, respectively. MM-PBSA (molecular mechanics Poisson-Boltzmann surface area) calculations were utilized to estimate binding free energies.</p><p><strong>Results: </strong>Molecular dynamics simulations demonstrate that phytochemicals like EGCG, Diosgenin, Withaferin A, and Celastrol exhibit stable binding to their respective targets, suggesting potential therapeutic benefits. Specifically, EGCG shows strong and non-toxic binding affinity with GLS1, making it a promising candidate for cancer treatment.</p><p><strong>Conclusion: </strong>Our study underscores the potential of phytochemicals as effective inhibitors of cancer cell metabolism. The stable binding interactions highlight promising avenues for developing innovative cancer therapies. Further experimental investigations are warranted to validate these findings and advance the development of hybrid phytochemical-based treatments for combating chemoresistance.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":"21 3","pages":"211-228"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734064325567240930044647","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The objective of this study is to explore the therapeutic potential of phytochemicals in cancer cell metabolism by investigating their ability to inhibit key molecular targets involved in tumor growth and drug resistance.

Methods: We evaluated specific phytochemicals against critical cancer-related targets such as GLS1, CKα, MGLL, IDH1, PDHK1, and PHGDH. Molecular docking methods were used to understand the binding interactions between phytochemicals and their selected targets. ADME (absorption, distribution, metabolism, and excretion) analysis and molecular dynamics (MD) simulations were conducted to assess pharmacokinetic properties and ligand-protein interaction dynamics, respectively. MM-PBSA (molecular mechanics Poisson-Boltzmann surface area) calculations were utilized to estimate binding free energies.

Results: Molecular dynamics simulations demonstrate that phytochemicals like EGCG, Diosgenin, Withaferin A, and Celastrol exhibit stable binding to their respective targets, suggesting potential therapeutic benefits. Specifically, EGCG shows strong and non-toxic binding affinity with GLS1, making it a promising candidate for cancer treatment.

Conclusion: Our study underscores the potential of phytochemicals as effective inhibitors of cancer cell metabolism. The stable binding interactions highlight promising avenues for developing innovative cancer therapies. Further experimental investigations are warranted to validate these findings and advance the development of hybrid phytochemical-based treatments for combating chemoresistance.

探索植物化学物质作为癌细胞代谢途径的潜在抑制剂:一项计算研究。
目的:通过研究植物化学物质抑制肿瘤生长和耐药关键分子靶点的能力,探索植物化学物质在肿瘤细胞代谢中的治疗潜力。方法:我们评估了特定的植物化学物质对关键癌症相关靶点的作用,如GLS1、CKα、MGLL、IDH1、PDHK1和PHGDH。分子对接方法用于了解植物化学物质与其选定靶点之间的结合相互作用。分别进行了ADME(吸收、分布、代谢和排泄)分析和分子动力学(MD)模拟,以评估药代动力学性质和配体-蛋白相互作用动力学。采用分子力学泊松-玻尔兹曼表面积(MM-PBSA)计算方法估算结合自由能。结果:分子动力学模拟表明,EGCG、薯蓣皂苷元、Withaferin A和Celastrol等植物化学物质与各自的靶标具有稳定的结合,表明其潜在的治疗益处。具体而言,EGCG与GLS1表现出强大且无毒的结合亲和力,使其成为治疗癌症的有希望的候选者。结论:我们的研究强调了植物化学物质作为癌细胞代谢有效抑制剂的潜力。稳定的结合相互作用强调了开发创新癌症治疗的有希望的途径。需要进一步的实验研究来验证这些发现,并推进基于植物化学的杂交治疗的发展,以对抗化学抗性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medicinal Chemistry
Medicinal Chemistry 医学-医药化学
CiteScore
4.30
自引率
4.30%
发文量
109
审稿时长
12 months
期刊介绍: Aims & Scope Medicinal Chemistry a peer-reviewed journal, aims to cover all the latest outstanding developments in medicinal chemistry and rational drug design. The journal publishes original research, mini-review articles and guest edited thematic issues covering recent research and developments in the field. Articles are published rapidly by taking full advantage of Internet technology for both the submission and peer review of manuscripts. Medicinal Chemistry is an essential journal for all involved in drug design and discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信