Medicinal Chemistry最新文献

筛选
英文 中文
Synergistic Warriors: Design and Synthesis of Dual-Acting Schiff-Based Threaded 1,2,3-Triazole Hybrids for Potent Antineoplastic and Anti-Mycobacterial Activities.
IF 1.9 4区 医学
Medicinal Chemistry Pub Date : 2025-02-11 DOI: 10.2174/0115734064318062250206104355
Vinayak Walhekar, Raghavendra Kulkarni, Mohana Vamsi Nuli, Anil Kumar Garige, Dharmesh Deore, Ritesh Pawar, Ashwini Patil, Bhikshapathi Dvrn, Karajagi Santosh, Ravindra Kulkarni
{"title":"Synergistic Warriors: Design and Synthesis of Dual-Acting Schiff-Based Threaded 1,2,3-Triazole Hybrids for Potent Antineoplastic and Anti-Mycobacterial Activities.","authors":"Vinayak Walhekar, Raghavendra Kulkarni, Mohana Vamsi Nuli, Anil Kumar Garige, Dharmesh Deore, Ritesh Pawar, Ashwini Patil, Bhikshapathi Dvrn, Karajagi Santosh, Ravindra Kulkarni","doi":"10.2174/0115734064318062250206104355","DOIUrl":"https://doi.org/10.2174/0115734064318062250206104355","url":null,"abstract":"<p><strong>Objective: </strong>In the pursuit of identifying divergent scaffolds for potential anticancer and anti-mycobacterial agents, a novel series of Schiff-based threaded 1,2,3-triazoles was designed and synthesized.</p><p><strong>Methods: </strong>In this study, novel Schiff-based threaded 1,2,3-triazoles have been meticulously crafted and synthesized. Chemical structures of the synthesized molecules were confirmed by 1H NMR, 13C NMR and Mass spectra. Synthetic analogs were further evaluated for their antiproliferative, antitubercular and antimicrobial potentials by in vitro assays.</p><p><strong>Results: </strong>The in vitro anti-tumor (anti-proliferative) evaluation on HT29 cancer cells revealed that compounds 8b and 8h exhibited remarkable inhibitory activity with IC50 values of 25±0.8 and 24±0.9 μM. In the context of anti-mycobacterial analysis, compound 8c demonstrated promising activity (6.25 μM) against Mycobacterium tuberculosis H37Rv. Moreover, compounds 8d and 8e displayed equipotent antimicrobial potential (3.12 μM) comparable to Ciprofloxacin against both Staphylococcus aureus and Escherichia coli. Molecular docking studies unveiled that 8c exhibited robust binding within the active pocket of carbonic anhydrase XII (docking energy -8.4 kcal/mol) and demonstrated a promising docking profile with β-ketoacyl ACP synthase I (docking energy - 9.5 kcal/mol) in the enzyme's binding pocket.</p><p><strong>Conclusion: </strong>Structure-activity relationship (SAR) analysis identified three pivotal pharmacophores; 1,2,3-triazole, aromatic ring system (substituted with halogens and -NO2), and imine functionalities as crucial for the development of dual inhibitors targeting cancer and tuberculosis, showcasing an outstanding in silico ADMET profile. Therefore, these compounds merit consideration as noteworthy pharmacological lead molecules in the realm of cancer and tuberculosis drug discovery and development.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, Synthesis, Characterization, and Antitumor Activities of Benzimidazole-functionalized Organoruthenium Complexes Bearing Fluorine Group.
IF 1.9 4区 医学
Medicinal Chemistry Pub Date : 2025-02-11 DOI: 10.2174/0115734064331622241113032042
Ramazan Paşahan, Özlem Demirci, Irmak İçen Taşkın, Aziz Paşahan, Meryem Rüveyda Sever, Yetkin Gök, Aydın Aktaş
{"title":"Design, Synthesis, Characterization, and Antitumor Activities of Benzimidazole-functionalized Organoruthenium Complexes Bearing Fluorine Group.","authors":"Ramazan Paşahan, Özlem Demirci, Irmak İçen Taşkın, Aziz Paşahan, Meryem Rüveyda Sever, Yetkin Gök, Aydın Aktaş","doi":"10.2174/0115734064331622241113032042","DOIUrl":"https://doi.org/10.2174/0115734064331622241113032042","url":null,"abstract":"<p><strong>Background: </strong>This work presents the synthesis of Ru(II)NHC complexes bearing a series of 4-fluorobenzyl group. These complexes have been characterized by a variety of spectroscopic methods (1H NMR, 13C NMR, and FTIR) and by elemental analysis techniques.</p><p><strong>Methods: </strong>These complexes' antitumor activities against SH-SY5Y (human neuroblastoma) and HCT116 (human colon cancer) were investigated by 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) assay.</p><p><strong>Results: </strong>The results showed that all the synthesized complexes exhibited significant cytotoxic effect with low IC50 values 15 ± 0.57, 15.26 ± 0.71, 7.64 ± 0.30, 27.66 ± 0.36 and 14.45 ± 0.84 (μg/mL) respectively.</p><p><strong>Conclusion: </strong>Furthermore, apoptosis assessed by double labeling with Annexin V-FITC/PI indicated that complexes 1b and 1d can effectively induce apoptosis and inhibit cell proliferation at the S phase in SH-SY5Y cells. Taken together, Ru(II)NHC complexes containing the 4- fluorobenzyl group have significant potential for the development of novel, highly effective anticancer agents.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In silico Identification and Computational Screening of Potential AFP Inhibitors Against Liver Cancer.
IF 1.9 4区 医学
Medicinal Chemistry Pub Date : 2025-02-10 DOI: 10.2174/0115734064330103250106034126
Hassan Bin Waseem, Muhammad Shakeel, Faiz-Ul Hassan, Asma Yaqoob, Azhar Iqbal, Amina Khalid, Hafiza Nisha Akram, Noshaba Dilbar, Saad Qamar, Rana Adnan Tahir, Sheikh Arslan Sehgal
{"title":"In silico Identification and Computational Screening of Potential AFP Inhibitors Against Liver Cancer.","authors":"Hassan Bin Waseem, Muhammad Shakeel, Faiz-Ul Hassan, Asma Yaqoob, Azhar Iqbal, Amina Khalid, Hafiza Nisha Akram, Noshaba Dilbar, Saad Qamar, Rana Adnan Tahir, Sheikh Arslan Sehgal","doi":"10.2174/0115734064330103250106034126","DOIUrl":"https://doi.org/10.2174/0115734064330103250106034126","url":null,"abstract":"<p><strong>Introduction: </strong>Liver cancer is considered one of the most common types of cancer and a major cause of ephemerality worldwide having a higher prevalence rate in Asia and sub-Saharan Africa. The alpha-fetoprotein (AFP) is a serum glycoprotein that belongs to a class of oncodevelopmental proteins and is also involved in tumor formation.</p><p><strong>Methods: </strong>In the current effort, a hybrid approach of virtual screening followed by pharmacophore generation and molecular dynamic simulation analyses were performed. The screened top-ranked 10 docked compounds from the selected anti-cancer compound library were utilized to generate the ligand-based pharmacophore. Virtual screening was performed two-dimensional similarity search against the selected natural compound library based on their physicochemical properties. It was observed that all the compounds from the anti-cancer compound library and natural compound library showed similar binding resides.</p><p><strong>Results: </strong>Therefore, the top-ranked screened compounds that showed the least binding energy and highest binding affinity against AFP, obtained through the anti-cancer drug library and natural compound library were reported. The molecular docking analyses revealed that Leu-219, His-222, Lys-242, Lys-246, His-316, Glu-318, Ala-366, Val-367, Gly-475, Ile-479, Ala-471, Asp-478 were observed as potential residues for interaction.</p><p><strong>Conclusion: </strong>The observed results of virtual screening, molecular docking, and MD simulation analyses entail noteworthy observations illustrating that NC002 was a potent inhibitor. The proposed compound NC002 may have potential against liver cancer by targeting AFP based on MD simulation analyses, PCA, and MM-GBSA.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of the PARP1 Inhibitors from Natural Compounds Using Structure-Based Virtual Screening and Bioactivity Evaluation.
IF 1.9 4区 医学
Medicinal Chemistry Pub Date : 2025-02-07 DOI: 10.2174/0115734064350048241121110017
Dabo Pan, Yaxuan Huang, Dewen Jiang, Xiaojie Jin, Mingkai Wu, Jianjun Luo, Yonghao Zhang
{"title":"Discovery of the PARP1 Inhibitors from Natural Compounds Using Structure-Based Virtual Screening and Bioactivity Evaluation.","authors":"Dabo Pan, Yaxuan Huang, Dewen Jiang, Xiaojie Jin, Mingkai Wu, Jianjun Luo, Yonghao Zhang","doi":"10.2174/0115734064350048241121110017","DOIUrl":"https://doi.org/10.2174/0115734064350048241121110017","url":null,"abstract":"<p><strong>Background: </strong>PARP1 (poly ADP-ribose polymerase 1, also known as ADPRT1) plays a significant role in DNA repair and has become an attractive target for treating PARP1-related diseases, such as cancer.</p><p><strong>Objective: </strong>This study aimed to discover inhibitors targeting PARP1 from the phytochemicals of Huangbai (Phellodendron chinense Schneid.), Baixianpi (Dictamnus dasycarpus Turcz.), and Shechuangzi (Cnidium monnieri (L.) Spreng.).</p><p><strong>Methods: </strong>The chemical compositions of Huangbai, Baixianpi, and Shechuangzi were extracted from the HERB database. Next, a combination of molecular docking and PARP1 enzyme assay was used to identify PARP1 inhibitors from these chemical components. Finally, molecular dynamics simulation and binding free energy calculation were used to explore the detailed interaction mode of these inhibitors with PARP1.</p><p><strong>Results: </strong>A total of 507 chemical constituents of Huangbai, Baixianpi, and Shechuangzi were collected from the HERB database. Four potential PARP1 inhibitors were screened based on molecular docking and PARP1 enzyme assay. Demethyleneberberine exhibited strong PARP1 inhibitory activity with an IC50 value of 2.0 ± 0.8 μM. The IC50 values of the inhibitory activities of 8-hydroxy dictanmnine, meranzin hydrate, and osthol on PARP1 ranged from 44 μM to 76 μM. Molecular dynamics simulation and binding free energy calculation suggested that the nonpolar interaction energies of HIS862, GLY863, TYR889, TYR896, PHE897, and TYR907 played a primary role in the binding of inhibitors to PARP1.</p><p><strong>Conclusion: </strong>Integrating molecular simulation and bioactivity testing was found to be an effective approach for the rapid discovery of targeted PARP1 inhibitors. Demethyleneberberine demonstrated strong PRAP1 inhibitory activity and has a good prospect for development.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking the Biological Potential of 2-Pyridones: Synthesis, Antioxidant and Antimicrobial Activity of N-Phenacylated 5/6-Chloro-2-pyridones.
IF 1.9 4区 医学
Medicinal Chemistry Pub Date : 2025-02-07 DOI: 10.2174/0115734064336556250116195638
Sarita Sangwan, Sonu Chauhan, Neelam Yadav, Ravi Kumar, Anil Duhan, Vinod Malik
{"title":"Unlocking the Biological Potential of 2-Pyridones: Synthesis, Antioxidant and Antimicrobial Activity of N-Phenacylated 5/6-Chloro-2-pyridones.","authors":"Sarita Sangwan, Sonu Chauhan, Neelam Yadav, Ravi Kumar, Anil Duhan, Vinod Malik","doi":"10.2174/0115734064336556250116195638","DOIUrl":"https://doi.org/10.2174/0115734064336556250116195638","url":null,"abstract":"<p><strong>Aim: </strong>A simple and efficient synthesis of 14 new (9a-9n) N-phenacyl-2-pyridones with good yields (up to 75%), is reported. The synthesized derivatives were screened for their in vitro radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH), their in vitro antimicrobial potential was tested against human pathogenic bacterial strains, including Bacillus cereus, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, as well as the fungal strain Candida albicans.</p><p><strong>Method: </strong>All compounds displayed modest antioxidant activity, with compound 9b being the most potent in the DPPH radical scavenging assay. Most of the synthesized compounds exhibited good to excellent antimicrobial activity, however, the compounds (9d, and 9b) showed maximum inhibition zone diameters of 18.75, and 18.25mm respectively, demonstrating better antimicrobial potential than the standard drug streptomycin against Staphylococcus aureus.</p><p><strong>Result: </strong>However, the compound 9f was found most effective against Pseudomonas aeruginosa with a 23.25 mm zone of inhibition against a 17.50 mm zone of inhibition of the standard, streptomycin. Molecular docking of the compounds 9d and 9f with tyrosyl-tRNA synthetase revealed good binding with the target.</p><p><strong>Conclusion: </strong>The electron-withdrawing substituents on the aryl ring of synthesized N-phenacyl-2- pyridones improved the antioxidant activity, however, for Gram-positive bacteria, less lipophilic or more hydrophilic substituents, such as halogens, displayed better antimicrobial activity. Similarly, it was the more lipophilic substitutions on the aryl ring that improved the antimicrobial activity against Gram-negative bacteria.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Structural Requirement of Curcumin-Based CK2 Inhibitors as Anticancer Agents: 3D-QSAR, Pharmacophore Modeling, Virtual Screening, and Molecular Docking.
IF 1.9 4区 医学
Medicinal Chemistry Pub Date : 2025-02-04 DOI: 10.2174/0115734064330612241121071830
Firdous Fatima, Priyanshu Nema, Anushka Garhwal, Sushil Kumar Kashaw
{"title":"Exploring Structural Requirement of Curcumin-Based CK2 Inhibitors as Anticancer Agents: 3D-QSAR, Pharmacophore Modeling, Virtual Screening, and Molecular Docking.","authors":"Firdous Fatima, Priyanshu Nema, Anushka Garhwal, Sushil Kumar Kashaw","doi":"10.2174/0115734064330612241121071830","DOIUrl":"https://doi.org/10.2174/0115734064330612241121071830","url":null,"abstract":"<p><strong>Introduction: </strong>Casein Kinase 2 (CK2), discovered as one of the earliest protein kinases, is a ubiquitous Ser/Thr protein kinase-specific to acidic environments. CK2 has been implicated in regulating diverse cellular processes and has been linked to the onset of various diseases, including cancer.</p><p><strong>Method: </strong>Consequently, modulating CK2 function has emerged as a potential therapeutic strategy. However, currently, available CK2 inhibitors or modulators often lack sufficient specificity and potency.</p><p><strong>Results: </strong>The results were validated through QSAR of curcumin derivatives, Pharmacophore modeling, virtual screening performed for filtered curcumin-like featured derivatives from the database, and Molecular Docking approaches. Since there is a solved crystal structure of high-resolution Xray crystal structures of Human protein kinase CK2 alpha in complex with ferulic aldehyde.</p><p><strong>Conclusion: </strong>Also, structure-based virtual screening was performed against a total of 3253 compounds from different libraries, and only the top 4 best-hit compounds with exceptional docking scores exceeding >-7 kcal/mol (more than 7 kcal/mol) were screened and analyzed. However, to validate their therapeutic potential, these compounds require in-vitro evaluation to assess their CK2 targeting ability.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143364929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioactive Compounds from Myrica esculenta: Antioxidant Insights and Docking Studies on H+K+-ATPase and H2 Receptor Targets.
IF 1.9 4区 医学
Medicinal Chemistry Pub Date : 2025-02-04 DOI: 10.2174/0115734064366819250125070619
Rashmi Pathak, Phool Chandra
{"title":"Bioactive Compounds from Myrica esculenta: Antioxidant Insights and Docking Studies on H+K+-ATPase and H2 Receptor Targets.","authors":"Rashmi Pathak, Phool Chandra","doi":"10.2174/0115734064366819250125070619","DOIUrl":"https://doi.org/10.2174/0115734064366819250125070619","url":null,"abstract":"<p><strong>Background: </strong>Myrica esculenta (Myricaceae) are common in the Indian Himalayas. Traditional medicine uses it to treat chronic bronchitis, inflammation, stomach ulcers, anaemia, diarrhoea, asthma, and ear, throat, and nose disorders. Its varied medicinal benefits are recognised in the ayurvedic pharmacopoeia.</p><p><strong>Aim: </strong>Isolation of Bioactive Compounds from M. esculenta: Assessment of Antioxidant Activity and Molecular Docking Studies Targeting the H+K+-ATPase enzyme and H2 Receptor Material and Methods: The fruit of the Myrica esculenta plant was extracted. The total phenolic and total flavonoid content of the extract were determined. Following column chromatography, two phytoconstituents were identified by mass spectroscopy, FTIR, and NMR. The antioxidant activity of phytoconstituents was evaluated using the DPPH Scavenging Assay, Reactive Nitrogen Oxide Scavenging Assay, and Hydroxyl Free Radical Scavenging Assay. Then, molecular docking studies were performed against the H+K+-ATPase enzyme and H2 Receptor.</p><p><strong>Results: </strong>The research successfully extracted methanolic extract from M. esculenta by maceration, which yielded rich in flavonoids and phenolic content and isolated compounds using column chromatography, which was further characterized to be myricetin and catechin using Mass spectroscopy, FTIR, and NMR. The further evaluation of the antioxidant activity of compounds demonstrated significant activity with IC50 value indicating strong free radical scavenging activity. Molecular docking studies were performed against the H+K+-ATPase enzyme and H2 Receptor, revealing that both the compounds exhibit high binding affinity and favorable interactions with key sites.</p><p><strong>Conclusion: </strong>The findings suggest that the isolated compounds myricetin and catechin possess potential antioxidant activity and could be a potential therapeutic target for the H+K+-ATPase enzyme and H2 Receptor.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143364926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Pyridine-Based Schemes: A Comprehensive Review on their Synthesis and Therapeutic Applications.
IF 1.9 4区 医学
Medicinal Chemistry Pub Date : 2025-01-28 DOI: 10.2174/0115734064343054250108152240
Amruta M Balikai, M R Pradeep Kumar, Kalirajan Rajagopal, Mohammed Ali Alshehri, Safia Obaidur Rab, Mohamed H Nafady, Talha Bin Emran
{"title":"Exploring Pyridine-Based Schemes: A Comprehensive Review on their Synthesis and Therapeutic Applications.","authors":"Amruta M Balikai, M R Pradeep Kumar, Kalirajan Rajagopal, Mohammed Ali Alshehri, Safia Obaidur Rab, Mohamed H Nafady, Talha Bin Emran","doi":"10.2174/0115734064343054250108152240","DOIUrl":"https://doi.org/10.2174/0115734064343054250108152240","url":null,"abstract":"<p><p>Pyridine and its derivatives are six-membered aromatic rings containing nitrogen, which are abundant in nature and indispensable in studying heterocyclic chemistry. They constitute significant chemical substances with numerous applications. The application of pyridine derivatives by incorporating metals in modern medicine is growing in relevance. Due to their convenient parallelization and various testing capabilities in the chemical domain, pyridine derivatives have attracted increased interest in the treatment of various disease states. This review aims to systematically evaluate and highlight the recent advancements in the synthesis (conventional, synthetic, and green approach) and biological activities of metal-based pyridine derivatives, including antioxidant, antimicrobial, and antitumor activities, while identifying promising candidates for further drug development. By consolidating all this knowledge underlying their biological effects, this review aims to pave the way for future research endeavors and encourage the exploration of pyridine derivatives as viable therapeutic agents across a diverse array of medical applications.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating Machine Learning and Pharmacophore Features for Enhanced Prediction of H1 Receptor Blockers.
IF 1.9 4区 医学
Medicinal Chemistry Pub Date : 2025-01-27 DOI: 10.2174/0115734064355393250121062539
Zaid Anis Sherwani, Mohammad Nur-E-Alam, Aftab Ahmed, Zaheer Ul-Haq
{"title":"Integrating Machine Learning and Pharmacophore Features for Enhanced Prediction of H1 Receptor Blockers.","authors":"Zaid Anis Sherwani, Mohammad Nur-E-Alam, Aftab Ahmed, Zaheer Ul-Haq","doi":"10.2174/0115734064355393250121062539","DOIUrl":"https://doi.org/10.2174/0115734064355393250121062539","url":null,"abstract":"<p><strong>Introduction: </strong>Histamine Type I Receptor Antagonists (H1 blockers) are widely used to mitigate histamine-induced inflammation, particularly in allergic reactions. Histamine, a biogenic amine found in endothelial cells, vascular smooth muscle, bronchial smooth muscle, and the hypothalamus, is a key player in these responses. H1 blockers are essential in cough syrups and flu medications and are divided into two generations: first-generation H1 blockers, which are sedating and have numerous side effects, and second-generation blockers, which are non-sedating and generally less toxic but may still exhibit cross-reactivity with other receptors.</p><p><strong>Method: </strong>In this study, a comprehensive database of compounds was utilized alongside fexofenadine as a benchmark to discover compounds with potentially superior efficacy and reduced side effect profiles. In particular, multidimensional K-means clustering, a machine-learning technique, was applied to identify compounds with chemical structures similar to fexofenadine.</p><p><strong>Result: </strong>Utilizing computational prediction of pharmacokinetic profile and molecular docking experiments, the action of these drugs on the H1 receptor was assessed. Furthermore, the crossreactivity of antihistamines was investigated by conducting a structure-based pharmacophore feature analysis of the docked poses of highly toxic antihistamines with various receptors.</p><p><strong>Conclusion: </strong>By identifying and proposing the removal of common toxic features, we aim to facilitate the development of antihistamines with fewer adverse effects.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143053002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyridine Derivatives: A Comprehensive Review of Their Potential as Anti-Diabetic Agents.
IF 1.9 4区 医学
Medicinal Chemistry Pub Date : 2025-01-24 DOI: 10.2174/0115734064342827241230053148
Deepak Dua, Prakash Kumar, Riya Anand, Salvi Sood, Gurdeep Singh
{"title":"Pyridine Derivatives: A Comprehensive Review of Their Potential as Anti-Diabetic Agents.","authors":"Deepak Dua, Prakash Kumar, Riya Anand, Salvi Sood, Gurdeep Singh","doi":"10.2174/0115734064342827241230053148","DOIUrl":"https://doi.org/10.2174/0115734064342827241230053148","url":null,"abstract":"<p><strong>Background: </strong>Diabetes mellitus and obesity are two of the most frequent health conditions in the world, prompting medical researchers to seek novel effective treatments. According to World Health Organization (WHO) regulations and several research studies, diabetes is regarded as a significant and leading health concern worldwide. The search for efficient and safe antidiabetic drugs has led to the study of pyridine derivatives, a family of molecules with a wide range of pharmacological characteristics. Pyridines are important heterocyclic chemicals renowned for their various pharmacological properties.</p><p><strong>Methods: </strong>Materials were compiled using the three databases of ScienceDirect, PubMed, and Google Scholar. For this study, only English-language publications have been evaluated based on their titles, abstracts, and full texts using keywords like diabetes, pyridine Derivatives, α- glucosidase inhibitors, and α-amylase inhibitors.</p><p><strong>Results: </strong>Pyridine and its derivatives have received a lot of attention due to their wide range of potential uses in medicinal chemistry and pharmacology. Structural alterations and optimization efforts have resulted in higher effectiveness, selectivity, and safety characteristics. These discoveries highlight the importance of pyridine analogues as a novel class of therapeutic agents for diabetes management.</p><p><strong>Conclusion: </strong>The review highlights the significance of pyridine analogues in the development of antidiabetic treatments, opening new avenues for developing drugs and clinical use. The ongoing advancements in the discovery of pyridine derivatives underscore their potential as prospective agents in diabetic treatments.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信