新型1,3,4-恶二唑类脲酶和糖尿病抑制剂的发现:设计、合成、SAR、生物学和分子对接筛选

IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL
Sabeen Arshad, Aneela Maalik, Wajid Rehman, Yousaf Khan, Hina Sarfraz, Liaqat Rasheed, Mohammed B Hawsawi, Mustafa S Alluhaibi, Majed Alharbi
{"title":"新型1,3,4-恶二唑类脲酶和糖尿病抑制剂的发现:设计、合成、SAR、生物学和分子对接筛选","authors":"Sabeen Arshad, Aneela Maalik, Wajid Rehman, Yousaf Khan, Hina Sarfraz, Liaqat Rasheed, Mohammed B Hawsawi, Mustafa S Alluhaibi, Majed Alharbi","doi":"10.2174/0115734064385863250815045326","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Heterocyclic compounds bearing oxygen and nitrogen atoms are key pharmacophores in modern drug design. Among them, 1,3,4-oxadiazoles are notable for their diverse biological activities, including anti-inflammatory, anticancer, antidiabetic, antibacterial, and enzyme inhibitory effects. This study focuses on the synthesis and evaluation of indazole-based 1,3,4-oxadiazole-benzenesulfonothioate hybrids as potential therapeutic agents.</p><p><strong>Method: </strong>A multistep synthetic route was employed to develop a series of eighteen (18) analogues. The synthetic strategy involved the formation of methyl 5-methyl-1H-indazole-3-carboxylate, conversion to carbohydrazide, cyclization with CS<sub>2</sub>, and final coupling with substituted benzenesulfonyl chlorides to yield the target hybrids (1-18).</p><p><strong>Results: </strong>The urease inhibition potential of scaffolds ranged from IC<sub>50</sub> = 17.88 ± 0.36 to 37.98 ± 0.80 μM as compared to the standard drug thiourea (IC<sub>50</sub> = 29.45 ± 0.76 μM). The exceptional urease and α-glucosidase activity was shown by scaffolds (4, 7, 9, 11) due to the presence of electron- withdrawing groups (-F, NO<sub>2</sub>, and Cl). In comparison, the α-glucosidase inhibition potential shown by all the scaffolds was in the range (IC<sub>50</sub> = 3.19 ± 0.27 - 12.24 ± 1.33 μM). Compound-9 showed promising inhibitory potential against urease, with an IC<sub>50</sub> = 17.90 ± 0.30 μM, and α- glucosidase (IC<sub>50</sub> = 3.19 ± 0.27 μM), both indicating minimum IC<sub>50</sub> values.</p><p><strong>Discussion: </strong>The enhanced activity of compounds bearing electron-withdrawing groups (F, NO2, Cl) supports their role in modulating enzyme inhibition. In silico molecular docking further confirmed strong binding affinities with the active sites of target enzymes, correlating well with the experimental results.</p><p><strong>Conclusion: </strong>The synthesized 1,3,4-oxadiazole derivatives demonstrate promising dual inhibitory activity against urease and α-glucosidase, suggesting their potential as lead compounds in the treatment of gastric infections and diabetes. This study contributes to the ongoing development of multifunctional therapeutic agents with improved efficacy and selectivity.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of Novel 1,3,4-oxadiazole-based Inhibitors Against Urease and Diabetes: Design, Synthesis, SAR, Biological, and Molecular Docking Screening.\",\"authors\":\"Sabeen Arshad, Aneela Maalik, Wajid Rehman, Yousaf Khan, Hina Sarfraz, Liaqat Rasheed, Mohammed B Hawsawi, Mustafa S Alluhaibi, Majed Alharbi\",\"doi\":\"10.2174/0115734064385863250815045326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Heterocyclic compounds bearing oxygen and nitrogen atoms are key pharmacophores in modern drug design. Among them, 1,3,4-oxadiazoles are notable for their diverse biological activities, including anti-inflammatory, anticancer, antidiabetic, antibacterial, and enzyme inhibitory effects. This study focuses on the synthesis and evaluation of indazole-based 1,3,4-oxadiazole-benzenesulfonothioate hybrids as potential therapeutic agents.</p><p><strong>Method: </strong>A multistep synthetic route was employed to develop a series of eighteen (18) analogues. The synthetic strategy involved the formation of methyl 5-methyl-1H-indazole-3-carboxylate, conversion to carbohydrazide, cyclization with CS<sub>2</sub>, and final coupling with substituted benzenesulfonyl chlorides to yield the target hybrids (1-18).</p><p><strong>Results: </strong>The urease inhibition potential of scaffolds ranged from IC<sub>50</sub> = 17.88 ± 0.36 to 37.98 ± 0.80 μM as compared to the standard drug thiourea (IC<sub>50</sub> = 29.45 ± 0.76 μM). The exceptional urease and α-glucosidase activity was shown by scaffolds (4, 7, 9, 11) due to the presence of electron- withdrawing groups (-F, NO<sub>2</sub>, and Cl). In comparison, the α-glucosidase inhibition potential shown by all the scaffolds was in the range (IC<sub>50</sub> = 3.19 ± 0.27 - 12.24 ± 1.33 μM). Compound-9 showed promising inhibitory potential against urease, with an IC<sub>50</sub> = 17.90 ± 0.30 μM, and α- glucosidase (IC<sub>50</sub> = 3.19 ± 0.27 μM), both indicating minimum IC<sub>50</sub> values.</p><p><strong>Discussion: </strong>The enhanced activity of compounds bearing electron-withdrawing groups (F, NO2, Cl) supports their role in modulating enzyme inhibition. In silico molecular docking further confirmed strong binding affinities with the active sites of target enzymes, correlating well with the experimental results.</p><p><strong>Conclusion: </strong>The synthesized 1,3,4-oxadiazole derivatives demonstrate promising dual inhibitory activity against urease and α-glucosidase, suggesting their potential as lead compounds in the treatment of gastric infections and diabetes. This study contributes to the ongoing development of multifunctional therapeutic agents with improved efficacy and selectivity.</p>\",\"PeriodicalId\":18382,\"journal\":{\"name\":\"Medicinal Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734064385863250815045326\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734064385863250815045326","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

含氧、氮杂环化合物是现代药物设计中的重要药效团。其中,1,3,4-恶二唑类具有多种生物活性,包括抗炎、抗癌、降糖、抗菌和酶抑制作用。本文主要研究了以茚唑为基础的1,3,4-恶二唑-苯磺硫代化合物的合成和评价。方法:采用多步骤合成路线,制备了18个类似物。合成策略包括形成5-甲基- 1h -吲哚-3-羧酸甲酯,转化为碳酰肼,与CS2环化,最后与取代苯磺酰氯偶联得到目标杂化物(1-18)。结果:与标准药物硫脲(IC50 = 29.45±0.76 μM)相比,支架的脲酶抑制电位IC50范围为17.88±0.36 ~ 37.98±0.80 μM。由于存在吸电子基团(- f, NO2和Cl),支架显示出特殊的脲酶和α-葡萄糖苷酶活性(4,7,9,11)。结果表明,各支架对α-葡萄糖苷酶的抑制电位均在3.19±0.27 ~ 12.24±1.33 μM范围内。化合物9对脲酶和α-葡萄糖苷酶的IC50值均为最小,分别为17.90±0.30 μM和3.19±0.27 μM。讨论:含有吸电子基团(F, NO2, Cl)的化合物的活性增强支持它们在调节酶抑制中的作用。硅分子对接进一步证实了与靶酶活性位点的强结合亲和性,与实验结果吻合较好。结论:所合成的1,3,4-恶二唑衍生物对脲酶和α-葡萄糖苷酶具有良好的双抑制活性,可能成为治疗胃感染和糖尿病的先导化合物。该研究有助于不断开发具有更高疗效和选择性的多功能治疗剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovery of Novel 1,3,4-oxadiazole-based Inhibitors Against Urease and Diabetes: Design, Synthesis, SAR, Biological, and Molecular Docking Screening.

Introduction: Heterocyclic compounds bearing oxygen and nitrogen atoms are key pharmacophores in modern drug design. Among them, 1,3,4-oxadiazoles are notable for their diverse biological activities, including anti-inflammatory, anticancer, antidiabetic, antibacterial, and enzyme inhibitory effects. This study focuses on the synthesis and evaluation of indazole-based 1,3,4-oxadiazole-benzenesulfonothioate hybrids as potential therapeutic agents.

Method: A multistep synthetic route was employed to develop a series of eighteen (18) analogues. The synthetic strategy involved the formation of methyl 5-methyl-1H-indazole-3-carboxylate, conversion to carbohydrazide, cyclization with CS2, and final coupling with substituted benzenesulfonyl chlorides to yield the target hybrids (1-18).

Results: The urease inhibition potential of scaffolds ranged from IC50 = 17.88 ± 0.36 to 37.98 ± 0.80 μM as compared to the standard drug thiourea (IC50 = 29.45 ± 0.76 μM). The exceptional urease and α-glucosidase activity was shown by scaffolds (4, 7, 9, 11) due to the presence of electron- withdrawing groups (-F, NO2, and Cl). In comparison, the α-glucosidase inhibition potential shown by all the scaffolds was in the range (IC50 = 3.19 ± 0.27 - 12.24 ± 1.33 μM). Compound-9 showed promising inhibitory potential against urease, with an IC50 = 17.90 ± 0.30 μM, and α- glucosidase (IC50 = 3.19 ± 0.27 μM), both indicating minimum IC50 values.

Discussion: The enhanced activity of compounds bearing electron-withdrawing groups (F, NO2, Cl) supports their role in modulating enzyme inhibition. In silico molecular docking further confirmed strong binding affinities with the active sites of target enzymes, correlating well with the experimental results.

Conclusion: The synthesized 1,3,4-oxadiazole derivatives demonstrate promising dual inhibitory activity against urease and α-glucosidase, suggesting their potential as lead compounds in the treatment of gastric infections and diabetes. This study contributes to the ongoing development of multifunctional therapeutic agents with improved efficacy and selectivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medicinal Chemistry
Medicinal Chemistry 医学-医药化学
CiteScore
4.30
自引率
4.30%
发文量
109
审稿时长
12 months
期刊介绍: Aims & Scope Medicinal Chemistry a peer-reviewed journal, aims to cover all the latest outstanding developments in medicinal chemistry and rational drug design. The journal publishes original research, mini-review articles and guest edited thematic issues covering recent research and developments in the field. Articles are published rapidly by taking full advantage of Internet technology for both the submission and peer review of manuscripts. Medicinal Chemistry is an essential journal for all involved in drug design and discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信