Materials Today Sustainability最新文献

筛选
英文 中文
Experimental study on constitutive relation of coal gangue coarse aggregate concrete under uniaxial compression 单轴压缩条件下煤矸石粗骨料混凝土构成关系的试验研究
IF 7.1 3区 材料科学
Materials Today Sustainability Pub Date : 2024-09-23 DOI: 10.1016/j.mtsust.2024.100987
{"title":"Experimental study on constitutive relation of coal gangue coarse aggregate concrete under uniaxial compression","authors":"","doi":"10.1016/j.mtsust.2024.100987","DOIUrl":"10.1016/j.mtsust.2024.100987","url":null,"abstract":"<div><div>As an efficient method for utilizing coal gangue (CG), concrete incorporating coal gangue as coarse aggregate has significantly reduced the reliance on natural aggregates, offering substantial environmental and economic benefits. In this study, coal gangue concrete was prepared with coal gangue replacement rates of 0, 20, 40, 60, 80, and 100%, and mechanical tests under unconfined compression were conducted to evaluate the stress-strain behavior and failure mechanism of coal gangue coarse aggregate concrete (CGC). Utilizing scanning electron microscope (SEM) microscopic characterization, the microscopic failure mechanism of CGC was further elucidated. With increased coal gangue replacement, the CGC's uniaxial compression failure mode shifts from shear to longitudinal splitting failure. The slope, peak stress and elastic modulus of the stress–strain curve's rising section are negatively correlated with the coal gangue content, while the falling section's slope, peak strain and ultimate strain are positively correlated. Next, building upon the classical constitutive model, we adjust the constitutive parameters utilizing the uniaxial compressive strength and coal gangue content. Finally, we introduce a predictive model for the CGC's constitutive compressive behavior across various content levels. There is a notably high agreement between the model and experimental data.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142315570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon nanotube/carbon foam thermal-bridge enhancing solar energy conversion and storage of phase change materials 碳纳米管/碳泡沫热桥增强相变材料的太阳能转换和储存功能
IF 7.1 3区 材料科学
Materials Today Sustainability Pub Date : 2024-09-23 DOI: 10.1016/j.mtsust.2024.100986
{"title":"Carbon nanotube/carbon foam thermal-bridge enhancing solar energy conversion and storage of phase change materials","authors":"","doi":"10.1016/j.mtsust.2024.100986","DOIUrl":"10.1016/j.mtsust.2024.100986","url":null,"abstract":"<div><div>Combining solar energy conversion with latent heat storage based on phase change materials (PCMs) has offered a promising way for expanding solar energy utilization. However, the application of PCMs for solar heat utilization is greatly limited by low thermal conductivity and poor sunlight absorption capacity. Carbon foam (CF) has excellent sunlight absorption properties, and carbon nanotube (CNT) have good thermal conductivity. In this study, CF/CNT porous material was prepared by self-assembly thermal-bridge between CF and CNT. CF/CNT was employed to a porous matrix for the encapsulation of octadecanol (OC), and then a composite photothermal PCM (CF/CNT/OC) was successfully fabricated. Compared with pure OC, the CF/CNT/OC has superior thermal conductivity capacity and excellent photothermal conversion performance. The thermal conductivity of CF/CNT/OC89 reached 1.31 W m<sup>−1</sup> K<sup>−1</sup>, and the photothermal conversion efficiency was 82.6 %. Meanwhile, the melting enthalpy of CF/CNT/OC98 reached up to 275.8 kJ∙kg<sup>−1</sup>, exhibiting the excellent thermal storage properties. This functional composite PCM has broad application prospects in solar energy capture and storage, building energy saving and so on.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MOF-derived magnetic nanocomposites as potential formulations for the efficient removal of organic pollutants from water via adsorption and advanced oxidation processes: A review MOF 衍生的磁性纳米复合材料是通过吸附和高级氧化过程高效去除水中有机污染物的潜在配方:综述
IF 7.1 3区 材料科学
Materials Today Sustainability Pub Date : 2024-09-23 DOI: 10.1016/j.mtsust.2024.100985
{"title":"MOF-derived magnetic nanocomposites as potential formulations for the efficient removal of organic pollutants from water via adsorption and advanced oxidation processes: A review","authors":"","doi":"10.1016/j.mtsust.2024.100985","DOIUrl":"10.1016/j.mtsust.2024.100985","url":null,"abstract":"<div><div>This review article summarizes current developments in the design and application of metal-organic framework (MOF)-derived magnetic nanocomposites (MNCs) to remove organic pollutants (OPs) in water efficiently. In the review, various methods for synthesis, like in-situ encapsulation and post-synthetic modification, have been discussed, showing how magnetic nanoparticles incorporated into MOFs resulted in materials that had improved adsorption and advanced oxidation processes. These NCs showed unique structural characteristics and functional advantages given their large surface area, tunable pore sizes, and magnetic separability. This work has emphasized dual functionality concerning adsorption and photocatalytic degradation. More importantly, these processes synergistically cooperate to realize considerably high removal efficiencies for a wide range of OPs. It also addresses current challenges on stability and scalability issues and proposes possible ways of improving MOF-MNCs' performance. This is followed by future research directions on the betterment of the practical application of MOF-MNCs in controlling water pollution, highlighting their potential as a feasible and effective solution for mitigating water contamination. Lastly, it is proposed in this synthesis that Ishikawa 5Ms should be considered when developing low-cost MOF-MNCs and industrializing their application for water depollution.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142315571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving HER activity and stability of Pt nanoparticle on Triazine graphitic nanoplatelets 提高三嗪石墨纳米片上铂纳米粒子的 HER 活性和稳定性
IF 7.1 3区 材料科学
Materials Today Sustainability Pub Date : 2024-09-21 DOI: 10.1016/j.mtsust.2024.100984
{"title":"Improving HER activity and stability of Pt nanoparticle on Triazine graphitic nanoplatelets","authors":"","doi":"10.1016/j.mtsust.2024.100984","DOIUrl":"10.1016/j.mtsust.2024.100984","url":null,"abstract":"<div><div>Triazine graphitic nanoplatelets (TGNP) were synthesized as an anchor to improve the activity and stability of Pt nanoparticles for the hydrogen evolution reaction (HER). Pt@TGNP, Pt supported on TGNP, showed high performance (<em>i.e.,</em> high activity and stability) for HER under acidic conditions. Although Pt@TGNP contained very low Pt content (8.7 wt%), it exhibited much better activity (overpotential: 32 mV, Tafel slope: 28.4 mV dec<sup>−1</sup>) and stability (overpotential increase: 1.6 mV) for HER, compared with Pt/C (overpotential: 35 mV, Tafel slope: 29.2 mV dec<sup>−1</sup>, and overpotential increase: 6.2 mV). The results convincingly demonstrate that the triazine units of TGNP offer active sites that increase catalytic activity, as well as anchoring sites to prevent the aggregation of Pt nanoparticles. Results confirmed that Pt@TGNP with its efficient catalytic activity and stability is a promising alternative to existing Pt-based catalysts, and TGNP with triazine is highly likely to be utilized as a catalyst support in various applications.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142315569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perovskite photovoltaics with cutting-edge strategies in 2D TMDs-based interfacial layer optimization 利用基于二维 TMD 的界面层优化的前沿战略开发 Perovskite 光伏技术
IF 7.1 3区 材料科学
Materials Today Sustainability Pub Date : 2024-09-21 DOI: 10.1016/j.mtsust.2024.100982
{"title":"Perovskite photovoltaics with cutting-edge strategies in 2D TMDs-based interfacial layer optimization","authors":"","doi":"10.1016/j.mtsust.2024.100982","DOIUrl":"10.1016/j.mtsust.2024.100982","url":null,"abstract":"<div><div>One practical solution for effective solar energy conversion is the use of perovskite photovoltaics (PV). Nevertheless, issues like hysteresis, instability, and short device lifetimes have restricted their practical use. As interfacial layers, two-dimensional transition metal dichalcogenides (TMDs) are quite different from metal oxides and small molecules. Optical and electronic properties can be improved by adjusting layers or applying strain on TMDs, which have a layered structure with direct bandgaps that is atomically thin. High carrier mobilities and distinct van der Waals interactions with neighboring layers are also supported by them. Charge transport capabilities; on the other hand, small molecules are typically processed using solution-based techniques and provide discrete energy levels. Interfacial layers facilitate smooth charge transport, which is advantageous to perovskite absorber layers. Much attention has been paid to the unique properties and compatibility of 2D TMDs with perovskite solar cells. The use of 2D TMDs materials as interfacial layers in perovskite photovoltaics (PVs) is reviewed in this review, with particular attention paid to their roles as electron transport layers (ETLs) and hole transport layers (HTLs). We first describe the main challenges faced by PSCs and how interfacial layers offer workable solutions. We also study the ways in which these layers improve robustness of the device, reduce hysteresis effects, and increase charge extraction efficiency. We consolidate information regarding the potential of two-dimensional (2D) materials to address important concerns concerning PSCs, thereby advancing the development of dependable and effective PVC devices for real-world solar energy harvesting applications. We do this by providing a comprehensive overview of recent research.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in pseudocapacitive electrode materials for high energy density aqueous supercapacitors: Combining transition metal oxides with carbon nanomaterials 用于高能量密度水性超级电容器的伪电容电极材料的最新进展:过渡金属氧化物与碳纳米材料的结合
IF 7.1 3区 材料科学
Materials Today Sustainability Pub Date : 2024-09-19 DOI: 10.1016/j.mtsust.2024.100981
{"title":"Recent advances in pseudocapacitive electrode materials for high energy density aqueous supercapacitors: Combining transition metal oxides with carbon nanomaterials","authors":"","doi":"10.1016/j.mtsust.2024.100981","DOIUrl":"10.1016/j.mtsust.2024.100981","url":null,"abstract":"<div><div>The demand for high-power and energy-dense electrochemical energy storage solutions has led to the utilization of pseudocapacitive materials. These materials store charges by undergoing Faradaic reactions at or near the electrode surfaces. They offer higher energy density than electric double-layer capacitors while maintaining the rapid charging/discharging capabilities characteristic of supercapacitors. This review delves into the synergistic relationship between transition metal oxides (TMOs) and carbon-based materials to create advanced supercapacitors. Combining the pseudocapacitive properties of TMOs with the high conductivity and carbon surface area, hybrid composites offer the potential to bridge the gap between energy and power density. The review comprehensively explores a range of TMOs, including ZnO, NiO, CoO, CuO, MnO<sub>2</sub>, and RuO<sub>2</sub>, and their integration with various carbon architectures. Key synthesis techniques, characterization methods, and electrochemical performance metrics are discussed to comprehensively understand these materials. Moreover, the review highlights recent advancements and identifies critical challenges to guide future research efforts toward developing high-performance and commercially viable supercapacitors based on TMO/carbon composites.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hygroscopic ionogel for enhanced thermoelectric generation performance 增强热发电性能的吸湿离子凝胶
IF 7.1 3区 材料科学
Materials Today Sustainability Pub Date : 2024-09-16 DOI: 10.1016/j.mtsust.2024.100976
{"title":"Hygroscopic ionogel for enhanced thermoelectric generation performance","authors":"","doi":"10.1016/j.mtsust.2024.100976","DOIUrl":"10.1016/j.mtsust.2024.100976","url":null,"abstract":"<div><p>Improving thermoelectric generators (TEGs) performance remains challenging in the context of energy crisis and thermal-pollution. Here, we present a strategy for thermal management and performance enhancement of TEGs by sustainable evaporative cooling utilizing highly hygroscopic and adhesive ionogels (PIGs). Rational swelling and poly-[2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (PDMAPS) chains with group interactions prevent lithium chloride (LiCl) and 1-ethyl-3-methylimidazolium acetate ([EMIM][Ac]) leakage, while carbon nanotubes (CNTs) and MIL-101(Cr) optimize the evaporative cooling of PIGs. PIGs possess high sorption (252.72% at 25 °C, 90% RH for 12 h) and steady sorption-desorption kinetics. Meanwhile, PIGs exhibit high adhesion (130.89 N m<sup>−1</sup>) on TEGs. The evaporative cooling of PIGs enhances the temperature difference of TEGs. The potential of PIG-TEG is increased by three times at heat source temperatures of 50–80 °C, and the output power density stabilizes at ∼706.25 mW m<sup>−2</sup> after heating at 50 °C for 1 h. Moreover, the PIG-TEG maintains stable output enhancement for prolonged time (over 24 h). Additionally, we integrate PIG-TEGs for the durable power supply of devices and design a movable model car, which utilizes waste heat for self-powering. PIGs realize effective thermoelectric output enhancement of TEGs, and provide ideas in clean energy conversion, wearable devices, and mobile power.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the effect of different biodiesels on corrosion of nickel alloy 评估不同生物燃料对镍合金腐蚀的影响
IF 7.1 3区 材料科学
Materials Today Sustainability Pub Date : 2024-09-10 DOI: 10.1016/j.mtsust.2024.100968
{"title":"Assessing the effect of different biodiesels on corrosion of nickel alloy","authors":"","doi":"10.1016/j.mtsust.2024.100968","DOIUrl":"10.1016/j.mtsust.2024.100968","url":null,"abstract":"<div><p>This investigation explores the corrosion behaviour of Ni alloy (UNS718), which is a potential material for storing biodiesel and making engine components. The study also examines the connection between Ni alloy corrosion and biodiesel degradation. Immersion tests were conducted using in-house biodiesels to evaluate the corrosion rates of Used Cooking Oil (UCOB), Karanja oil (KOB), and Jatropha oil (JOB) biodiesels on Ni alloy (UNS718). The results highlighted the role of corrosion product morphology and the formation of corrosion-driven pitting, cracks, etc., on Ni alloy when exposed to different biodiesels such as KOB, JOB, and UCOB. The study utilized gravimetric techniques to measure the corrosion rate and advanced analytical tools such as FESEM, EDS, XPS, NMR and XRF. It revealed decreased corrosion rates of Ni alloys with prolonged biodiesel immersion. For example, after 2160 h, Jatropha biodiesel exhibited a corrosion rate of 0.000699 mm/year, while the corrosion rates of Ni alloy exposed to UCOB and KOB were 0.001398 mm/year and 0.001048 mm/year, respectively. The study also suggests a detailed mechanism of Ni alloy corrosion when exposed to different biodiesels such as Karanja, Jatropha, and Used Cooking Oil.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of NiO/TiO2/rGO nanocomposites as a quasi-solid-state asymmetric supercapacitor: Paving the way for PhotoSupercapacitor application 制备作为准固态不对称超级电容器的 NiO/TiO2/rGO 纳米复合材料:为光电超级电容器的应用铺平道路
IF 7.1 3区 材料科学
Materials Today Sustainability Pub Date : 2024-09-07 DOI: 10.1016/j.mtsust.2024.100972
{"title":"Fabrication of NiO/TiO2/rGO nanocomposites as a quasi-solid-state asymmetric supercapacitor: Paving the way for PhotoSupercapacitor application","authors":"","doi":"10.1016/j.mtsust.2024.100972","DOIUrl":"10.1016/j.mtsust.2024.100972","url":null,"abstract":"<div><p>In this present communication, a novel ternary nanocomposite, NiO/TiO<sub>2</sub>/rGO (NTG), was synthesised via a simple hydrothermal technique for photosupercapacitor application. The XRD pattern confirmed the crystalline nature and phase structure of the as-synthesised material. FE-SEM and HR-TEM analyses demonstrated the embellishment of NiO/TiO<sub>2</sub> nanoparticles on the rGO sheets, which facilitates more voids and shorter diffusion paths. The electrochemical investigation of the prepared samples was assessed using 1 M Na<sub>2</sub>SO<sub>4</sub> and Na<sub>2</sub>CO<sub>3</sub> aqueous electrolyte solutions. Among the synthesised samples, NTG-2 carried out under 1 M Na<sub>2</sub>SO<sub>4</sub> electrolyte exhibited a maximum specific capacitance of 1285 Fg<sup>-1</sup> at 1 Ag<sup>-1</sup>, maintaining a capacitance retention of 94 % after 5000 cycles. The NTG-2 electrode was additionally utilised in the construction of an asymmetric supercapacitor that has an impressive specific capacitance of 478 Fg<sup>-1</sup> at 1 Ag<sup>-1</sup>. This displays an intriguing performance in terms of energy and power density of 42.2 Wh Kg<sup>−1</sup> at 0.5 kW kg<sup>−1</sup>. In PSC, the as-fabricated TiO<sub>2</sub>/N719/I<sup>−</sup>/I<sub>3</sub><sup>−</sup>/Pt@NTG-2//AC architecture possessed a specific capacitance of 567.5 Fg<sup>-1</sup> at 1 Ag<sup>-1</sup>, with an energy density of 50.4 Wh Kg<sup>−1</sup> and a power density of 0.4 kW kg<sup>−1</sup>. As a result, it has been concluded that the novel NTG-2 device opens new opportunities to develop new architectures for efficient energy storage applications.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Ti3C2Tx MXene@Carbon-Enhanced cellulose fiber composite-based photothermal absorber for sustainable water desalination 合成基于 Ti3C2Tx MXene@Carbon 增强纤维素纤维复合材料的光热吸收器,用于可持续海水淡化
IF 7.1 3区 材料科学
Materials Today Sustainability Pub Date : 2024-09-06 DOI: 10.1016/j.mtsust.2024.100971
{"title":"Synthesis of Ti3C2Tx MXene@Carbon-Enhanced cellulose fiber composite-based photothermal absorber for sustainable water desalination","authors":"","doi":"10.1016/j.mtsust.2024.100971","DOIUrl":"10.1016/j.mtsust.2024.100971","url":null,"abstract":"<div><p>Desalination is a process that extracts salt and minerals from seawater to produce fresh water. It is critical, particularly for those who live on islands or coastal areas. Solar thermal desalination harnesses solar energy to address some of the challenges of traditional desalination methods. It uses solar power to heat seawater directly, initiating evaporation and leaving the salt behind, and further the vapor is condensed to produce fresh water. This method reduces reliance on fossil fuels, minimizing environmental impact and energy costs. This research unveils the synthesis of a solar evaporator consisting of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene coated over the carbon-enhanced cellulose fibers (CCF) (hereby termed the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene@CCF composite), which is the first-time report in the field of solar water desalination in using sustainable solar heat absorber. The Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene@CCF composite achieves an impressive evaporation rate of 3.8 kg m<sup>−2</sup> h<sup>−1</sup> under 1 sun exposure. The hydrophilic Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene coating on the porous CCF promotes rapid water evaporation. Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene@CCF composite maximizes evaporation rates while maintaining water purity, which is in accordance with the <em>World Health Organization</em>FF (WHO) standards.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589234724003075/pdfft?md5=10a106366c6c4a1a54f028980aadcadf&pid=1-s2.0-S2589234724003075-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信