{"title":"Generalizations of the Kantorovich and Wielandt Inequalities with Applications to Statistics","authors":"Yunzhi Zhang, Xiaotian Guo, Jianzhong Liu, Xueping Chen","doi":"10.3390/math12182860","DOIUrl":"https://doi.org/10.3390/math12182860","url":null,"abstract":"By utilizing the properties of positive definite matrices, mathematical expectations, and positive linear functionals in matrix space, the Kantorovich inequality and Wielandt inequality for positive definite matrices and random variables are obtained. Some novel Kantorovich type inequalities pertaining to matrix ordinary products, Hadamard products, and mathematical expectations of random variables are provided. Furthermore, several interesting unified and generalized forms of the Wielandt inequality for positive definite matrices are also studied. These derived inequalities are then exploited to establish an inequality regarding various correlation coefficients and study some applications in the relative efficiency of parameter estimation of linear statistical models.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Domain Generation Diagnosis Framework for Unseen Conditions Based on Adaptive Feature Fusion and Augmentation","authors":"Tong Zhang, Haowen Chen, Xianqun Mao, Xin Zhu, Lefei Xu","doi":"10.3390/math12182865","DOIUrl":"https://doi.org/10.3390/math12182865","url":null,"abstract":"Emerging deep learning-based fault diagnosis methods have advanced in the current industrial scenarios of various working conditions. However, the prerequisite of obtaining target data in advance limits the application of these models to practical engineering scenarios. To address the challenge of fault diagnosis under unseen working conditions, a domain generation framework for unseen conditions fault diagnosis is proposed, which consists of an Adaptive Feature Fusion Domain Generation Network (AFFN) and a Mix-up Augmentation Method (MAM) for both the data and domain spaces. AFFN is utilized to fuse domain-invariant and domain-specific representations to improve the model’s generalization performance. MAM enhances the model’s exploration ability for unseen domain boundaries. The diagnostic framework with AFFN and MAM can effectively learn more discriminative features from multiple source domains to perform different generalization tasks for unseen working loads and machines. The feasibility of the proposed unseen conditions diagnostic framework is validated on the SDUST and PU datasets and achieved peak diagnostic accuracies of 94.15% and 93.27%, respectively.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Methods of Multi-Criteria Optimization of Technological Processes in a Fuzzy Environment Based on the Simplex Method and the Theory of Fuzzy Sets","authors":"Batyr Orazbayev, Kulman Orazbayeva, Yerbol Ospanov, Salamat Suleimenova, Lyailya Kurmangaziyeva, Valentina Makhatova, Yerlan Izbassarov, Aigerim Otebaeva","doi":"10.3390/math12182856","DOIUrl":"https://doi.org/10.3390/math12182856","url":null,"abstract":"Many modern technological objects in practice are characterized by the uncertainty of the initial information necessary for their management. Recently, one of the pressing scientific and practical problems is the development of new optimization methods for controlling the operating modes of such objects in a fuzzy environment. In this regard, the objective of this study is to develop methods of multi-criteria optimization in a fuzzy environment by modifying the simplex method and various optimality principles based on fuzzy mathematics methods. The methodology of the proposed study is based on a hybrid approach, which consists of the integrated use and modification of simplex methods and optimization methods with various optimality principles for working in a fuzzy environment. The main results are as follows: a simplex method of multi-criteria optimization of immeasurable criteria (here, we are talking about the impossibility of physical measurements of criteria, the values of which are estimated by decision maker); a theorem on the convergence of the solution sequence obtained using the proposed method to the minimum value of the criteria; a heuristic method based on a modification for fuzziness and a combination of the maximin and Pareto optimality principles, which allows effectively solving multi-criteria optimization problems in a fuzzy environment. The heuristic method proposed will be used to solve a real production problem—optimization of the technological process of benzene production.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematicsPub Date : 2024-09-14DOI: 10.3390/math12182869
Saiful R. Mondal
{"title":"On the Containment of the Unit Disc Image by Analytical Functions in the Lemniscate and Nephroid Domains","authors":"Saiful R. Mondal","doi":"10.3390/math12182869","DOIUrl":"https://doi.org/10.3390/math12182869","url":null,"abstract":"Suppose that A1 is a class of analytic functions f:D={z∈C:|z|<1}→C with normalization f(0)=1. Consider two functions Pl(z)=1+z and ΦNe(z)=1+z−z3/3, which map the boundary of D to a cusp of lemniscate and to a twi-cusped kidney-shaped nephroid curve in the right half plane, respectively. In this article, we aim to construct functions f∈A0 for which (i) f(D)⊂Pl(D)∩ΦNe(D) (ii) f(D)⊂Pl(D), but f(D)⊄ΦNe(D) (iii) f(D)⊂ΦNe(D), but f(D)⊄Pl(D). We validate the results graphically and analytically. To prove the results analytically, we use the concept of subordination. In this process, we establish the connection lemniscate (and nephroid) domain and functions, including gα(z):=1+αz2, |α|≤1, the polynomial gα,β(z):=1+αz+βz3, α,β∈R, as well as Lerch’s transcendent function, Incomplete gamma function, Bessel and Modified Bessel functions, and confluent and generalized hypergeometric functions.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematicsPub Date : 2024-09-14DOI: 10.3390/math12182875
Joseph Cabeza-Lainez
{"title":"New Geometric Theorems Derived from Integral Equations Applied to Radiative Transfer in Spherical Sectors and Circular Segments","authors":"Joseph Cabeza-Lainez","doi":"10.3390/math12182875","DOIUrl":"https://doi.org/10.3390/math12182875","url":null,"abstract":"Semicircles and circular sectors are both ubiquitous in the natural realm. However, mathematically speaking they have represented an enigma since antiquity. In recent years, the author has worked in integral equations with sections of spheres as related to radiative heat transfer and their associated form factors, to the point of defining new postulates. The main theorems thus far enunciated refer to the radiative exchange between circles and half disks, but recently the possibility to treat circular sectors has arrived, thanks to the research already conducted. As is known, to find the exact expression of the configuration factor by integration is complex. In the above mentioned problem of the circular sectors, the author reached the first two steps of the basic formulation for radiant exchange. Subsequently, the novelty of the procedure lies in introducing a finite differences approach for the third and fourth integrals which still remain unsolved, once we have been able to find the preliminary integrals. This possibility had not been identified by former research and the output provides us with an ample variety of unexpected scenarios. As a consequence, we are able to analyze with more precision the spatial transference of radiant heat for figures composed of circular sectors. We already know that spherical shapes cannot be discretized with any accuracy. Therefore, we would be able to reduce a considerable amount of hindrance in the progress of thermal radiation science. Important sequels will be derived for radiation in the entrance to tunnels, aircraft design and lighting as well.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematicsPub Date : 2024-09-13DOI: 10.3390/math12182854
Mario Versaci, Filippo Laganà, Francesco Carlo Morabito, Annunziata Palumbo, Giovanni Angiulli
{"title":"Adaptation of an Eddy Current Model for Characterizing Subsurface Defects in CFRP Plates Using FEM Analysis Based on Energy Functional","authors":"Mario Versaci, Filippo Laganà, Francesco Carlo Morabito, Annunziata Palumbo, Giovanni Angiulli","doi":"10.3390/math12182854","DOIUrl":"https://doi.org/10.3390/math12182854","url":null,"abstract":"In this work, a known Eddy Current (EC) model is adapted to characterize subsurface defects in carbon fiber-reinforced polymer (CFRP) plates intended for the civil aerospace industry. The considered defects include delaminations, microcracks, porosity, fiber breakage, and the simultaneous presence of these defects. Each defect is modeled as an additive variation in the material’s electrical conductivity tensor, allowing for a detailed mathematical representation of the defect’s influence on the CFRP’s electromagnetic behavior. The additivity of the variations in the conductivity tensor is justified by the assumption that the defects are not visible to the naked eye, implying that the material does not require non-destructive testing. The adapted EC model admits a unique and stable solution by verifying that all analytical steps are satisfied. To reconstruct 2D maps of the magnetic flux density amplitude, a FEM formulation is adopted, based on the energy functional because it ensures a stable and consistent numerical formulation given its coercivity. Moreover, the numerical approach allows precise and reliable numerical solutions, enhancing the capability to detect and quantify defects. The numerical results show that the obtained 2D maps are entirely superimposable on those highlighting the distribution of mechanical stress states known in the literature, offering a clear advantage in terms of detection costs. This approach provides an effective and economical solution for the non-destructive inspection of CFRP, ensuring accurate and timely defect diagnosis for maintaining structural integrity.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematicsPub Date : 2024-09-13DOI: 10.3390/math12182849
Meeyoung Park
{"title":"Improving the Diagnosis of Systemic Lupus Erythematosus with Machine Learning Algorithms Based on Real-World Data","authors":"Meeyoung Park","doi":"10.3390/math12182849","DOIUrl":"https://doi.org/10.3390/math12182849","url":null,"abstract":"This study addresses the diagnostic challenges of Systemic Lupus Erythematosus (SLE), an autoimmune disease with a complex etiology and varied symptoms. The ANA (antinuclear antibody) test, currently the primary diagnostic tool for SLE, exhibits high sensitivity but low specificity, often leading to inaccurate diagnoses. To enhance diagnostic precision, we propose integrating machine learning algorithms with existing clinical classification guidelines to improve SLE diagnosis accuracy, potentially reducing diagnostic errors and healthcare costs. We analyzed real-world data from a cohort of 24,990 patients over a 10-year period at the hospitals, excluding those previously diagnosed with SLE. Patients were categorized into three groups: negative ANA, positive ANA with non-SLE, and positive ANA with SLE. Feature selection was conducted to identify key factors influencing SLE diagnosis, and machine learning algorithms were employed to develop the CDSS. Performance analysis of three machine learning algorithms—decision tree, random forest, and gradient boosting—based on feature sets of 10, 20, and all available features revealed accuracy rates of 70%, 88%, and 87%, respectively, for the 20-feature set. The proposed system, utilizing real-world medical data, demonstrated modest performance in SLE diagnosis, highlighting the potential of machine learning-based CDSS in real clinical settings.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematicsPub Date : 2024-09-13DOI: 10.3390/math12182852
Aleksandar Senić, Momčilo Dobrodolac, Zoran Stojadinović
{"title":"Predicting Extension of Time and Increasing Contract Price in Road Infrastructure Projects Using a Sugeno Fuzzy Logic Model","authors":"Aleksandar Senić, Momčilo Dobrodolac, Zoran Stojadinović","doi":"10.3390/math12182852","DOIUrl":"https://doi.org/10.3390/math12182852","url":null,"abstract":"Road infrastructure plays a crucial role in the development of countries, significantly influencing economic growth, social progress, and environmental sustainability. Major infrastructure projects are frequently challenged by substantial risks and uncertainties, leading to delays, budget overruns, and compromised quality. These issues can undermine the economic viability and efficiency of projects, making effective risk management essential for minimizing negative impacts and ensuring project success. For these reasons, a study was conducted using a Sugeno fuzzy logic system applied to completed projects. The resulting model is based on 10 project characteristics and provides highly accurate predictions for Extension of Time (EoT) and Increasing Contract Price (ICP). By utilizing this model, project management can be significantly improved through more accurate forecasting of potential delays and cost overruns. The high precision of the Sugeno fuzzy logic system enables better risk assessment and proactive decision-making, allowing project managers to implement targeted strategies to mitigate risks and optimize project outcomes.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematicsPub Date : 2024-09-13DOI: 10.3390/math12182844
Malihe Niksirat, Mohsen Saffarian, Javad Tayyebi, Adrian Marius Deaconu, Delia Elena Spridon
{"title":"Fuzzy Multi-Objective, Multi-Period Integrated Routing–Scheduling Problem to Distribute Relief to Disaster Areas: A Hybrid Ant Colony Optimization Approach","authors":"Malihe Niksirat, Mohsen Saffarian, Javad Tayyebi, Adrian Marius Deaconu, Delia Elena Spridon","doi":"10.3390/math12182844","DOIUrl":"https://doi.org/10.3390/math12182844","url":null,"abstract":"This paper explores a multi-objective, multi-period integrated routing and scheduling problem under uncertain conditions for distributing relief to disaster areas. The goals are to minimize costs and maximize satisfaction levels. To achieve this, the proposed mathematical model aims to speed up the delivery of relief supplies to the most affected areas. Additionally, the demands and transportation times are represented using fuzzy numbers to more accurately reflect real-world conditions. The problem was formulated using a fuzzy multi-objective integer programming model. To solve it, a hybrid algorithm combining a multi-objective ant colony system and simulated annealing algorithm was proposed. This algorithm adopts two ant colonies to obtain a set of nondominated solutions (the Pareto set). Numerical analyses have been conducted to determine the optimal parameter values for the proposed algorithm and to evaluate the performance of both the model and the algorithm. Furthermore, the algorithm’s performance was compared with that of the multi-objective cat swarm optimization algorithm and multi-objective fitness-dependent optimizer algorithm. The numerical results demonstrate the computational efficiency of the proposed method.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematicsPub Date : 2024-09-13DOI: 10.3390/math12182850
Alessio Troiani
{"title":"Probabilistic Cellular Automata Monte Carlo for the Maximum Clique Problem","authors":"Alessio Troiani","doi":"10.3390/math12182850","DOIUrl":"https://doi.org/10.3390/math12182850","url":null,"abstract":"We consider the problem of finding the largest clique of a graph. This is an NP-hard problem and no exact algorithm to solve it exactly in polynomial time is known to exist. Several heuristic approaches have been proposed to find approximate solutions. Markov Chain Monte Carlo is one of these. In the context of Markov Chain Monte Carlo, we present a class of “parallel dynamics”, known as Probabilistic Cellular Automata, which can be used in place of the more standard choice of sequential “single spin flip” to sample from a probability distribution concentrated on the largest cliques of the graph. We perform a numerical comparison between the two classes of chains both in terms of the quality of the solution and in terms of computational time. We show that the parallel dynamics are considerably faster than the sequential ones while providing solutions of comparable quality.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}