论通过分析函数在半月板域和肾上腺域包含单位圆盘图像

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Saiful R. Mondal
{"title":"论通过分析函数在半月板域和肾上腺域包含单位圆盘图像","authors":"Saiful R. Mondal","doi":"10.3390/math12182869","DOIUrl":null,"url":null,"abstract":"Suppose that A1 is a class of analytic functions f:D={z∈C:|z|<1}→C with normalization f(0)=1. Consider two functions Pl(z)=1+z and ΦNe(z)=1+z−z3/3, which map the boundary of D to a cusp of lemniscate and to a twi-cusped kidney-shaped nephroid curve in the right half plane, respectively. In this article, we aim to construct functions f∈A0 for which (i) f(D)⊂Pl(D)∩ΦNe(D) (ii) f(D)⊂Pl(D), but f(D)⊄ΦNe(D) (iii) f(D)⊂ΦNe(D), but f(D)⊄Pl(D). We validate the results graphically and analytically. To prove the results analytically, we use the concept of subordination. In this process, we establish the connection lemniscate (and nephroid) domain and functions, including gα(z):=1+αz2, |α|≤1, the polynomial gα,β(z):=1+αz+βz3, α,β∈R, as well as Lerch’s transcendent function, Incomplete gamma function, Bessel and Modified Bessel functions, and confluent and generalized hypergeometric functions.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Containment of the Unit Disc Image by Analytical Functions in the Lemniscate and Nephroid Domains\",\"authors\":\"Saiful R. Mondal\",\"doi\":\"10.3390/math12182869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose that A1 is a class of analytic functions f:D={z∈C:|z|<1}→C with normalization f(0)=1. Consider two functions Pl(z)=1+z and ΦNe(z)=1+z−z3/3, which map the boundary of D to a cusp of lemniscate and to a twi-cusped kidney-shaped nephroid curve in the right half plane, respectively. In this article, we aim to construct functions f∈A0 for which (i) f(D)⊂Pl(D)∩ΦNe(D) (ii) f(D)⊂Pl(D), but f(D)⊄ΦNe(D) (iii) f(D)⊂ΦNe(D), but f(D)⊄Pl(D). We validate the results graphically and analytically. To prove the results analytically, we use the concept of subordination. In this process, we establish the connection lemniscate (and nephroid) domain and functions, including gα(z):=1+αz2, |α|≤1, the polynomial gα,β(z):=1+αz+βz3, α,β∈R, as well as Lerch’s transcendent function, Incomplete gamma function, Bessel and Modified Bessel functions, and confluent and generalized hypergeometric functions.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/math12182869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

假设 A1 是一类解析函数 f:D={z∈C:|z|<1}→C,归一化 f(0)=1.考虑两个函数 Pl(z)=1+z 和 ΦNe(z)=1+z-z3/3,它们分别将 D 的边界映射为右半平面上的∞尖顶和双尖顶肾形肾曲线。在本文中,我们的目标是构建以下函数 f∈A0 (i) f(D)⊂Pl(D)∩ΦNe(D) (ii) f(D)⊂Pl(D), 但 f(D)⊄ΦNe(D) (iii) f(D)⊂ΦNe(D), 但 f(D)⊄Pl(D) 。我们通过图形和分析验证了这些结果。为了分析证明结果,我们使用了从属关系的概念。在此过程中,我们建立了∞(和nephroid)域与函数的联系,包括gα(z):=1+αz2, |α|≤1,多项式gα,β(z):=1+αz+βz3, α,β∈R,以及勒氏超越函数、不完全伽马函数、贝塞尔函数和修正贝塞尔函数、汇交函数和广义超几何函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Containment of the Unit Disc Image by Analytical Functions in the Lemniscate and Nephroid Domains
Suppose that A1 is a class of analytic functions f:D={z∈C:|z|<1}→C with normalization f(0)=1. Consider two functions Pl(z)=1+z and ΦNe(z)=1+z−z3/3, which map the boundary of D to a cusp of lemniscate and to a twi-cusped kidney-shaped nephroid curve in the right half plane, respectively. In this article, we aim to construct functions f∈A0 for which (i) f(D)⊂Pl(D)∩ΦNe(D) (ii) f(D)⊂Pl(D), but f(D)⊄ΦNe(D) (iii) f(D)⊂ΦNe(D), but f(D)⊄Pl(D). We validate the results graphically and analytically. To prove the results analytically, we use the concept of subordination. In this process, we establish the connection lemniscate (and nephroid) domain and functions, including gα(z):=1+αz2, |α|≤1, the polynomial gα,β(z):=1+αz+βz3, α,β∈R, as well as Lerch’s transcendent function, Incomplete gamma function, Bessel and Modified Bessel functions, and confluent and generalized hypergeometric functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信