Mathematical Programming最新文献

筛选
英文 中文
On circuit diameter bounds via circuit imbalances 通过电路失衡论电路直径边界
IF 2.7 2区 数学
Mathematical Programming Pub Date : 2024-07-08 DOI: 10.1007/s10107-024-02107-x
Daniel Dadush, Zhuan Khye Koh, Bento Natura, László A. Végh
{"title":"On circuit diameter bounds via circuit imbalances","authors":"Daniel Dadush, Zhuan Khye Koh, Bento Natura, László A. Végh","doi":"10.1007/s10107-024-02107-x","DOIUrl":"https://doi.org/10.1007/s10107-024-02107-x","url":null,"abstract":"<p>We study the circuit diameter of polyhedra, introduced by Borgwardt, Finhold, and Hemmecke (SIAM J. Discrete Math. <b>29</b>(1), 113–121 (2015)) as a relaxation of the combinatorial diameter. We show that the circuit diameter of a system <span>({xin mathbb {R}^n:, Ax=b,, mathbb {0}le xle u})</span> for <span>(Ain mathbb {R}^{mtimes n})</span> is bounded by <span>(O(mmin {m, n - m}log (m+kappa _A)+nlog n))</span>, where <span>(kappa _A)</span> is the circuit imbalance measure of the constraint matrix. This yields a strongly polynomial circuit diameter bound if e.g., all entries of <i>A</i> have polynomially bounded encoding length in <i>n</i>. Further, we present circuit augmentation algorithms for LPs using the minimum-ratio circuit cancelling rule. Even though the standard minimum-ratio circuit cancelling algorithm is not finite in general, our variant can solve an LP in <span>(O(mn^2log (n+kappa _A)))</span> augmentation steps.\u0000</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"25 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monoidal strengthening and unique lifting in MIQCPs MIQCP 中的单值加强和唯一提升
IF 2.7 2区 数学
Mathematical Programming Pub Date : 2024-07-08 DOI: 10.1007/s10107-024-02112-0
Antonia Chmiela, Gonzalo Muñoz, Felipe Serrano
{"title":"Monoidal strengthening and unique lifting in MIQCPs","authors":"Antonia Chmiela, Gonzalo Muñoz, Felipe Serrano","doi":"10.1007/s10107-024-02112-0","DOIUrl":"https://doi.org/10.1007/s10107-024-02112-0","url":null,"abstract":"<p>Using the recently proposed maximal quadratic-free sets and the well-known monoidal strengthening procedure, we show how to improve intersection cuts for quadratically-constrained optimization problems by exploiting integrality requirements. We provide an explicit construction that allows an efficient implementation of the strengthened cuts along with computational results showing their improvements over the standard intersection cuts. We also show that, in our setting, there is <i>unique lifting</i> which implies that our strengthening procedure is generating the best possible cut coefficients for the integer variables.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"25 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal methods for convex nested stochastic composite optimization 凸嵌套随机复合优化的最优方法
IF 2.7 2区 数学
Mathematical Programming Pub Date : 2024-07-05 DOI: 10.1007/s10107-024-02090-3
Zhe Zhang, Guanghui Lan
{"title":"Optimal methods for convex nested stochastic composite optimization","authors":"Zhe Zhang, Guanghui Lan","doi":"10.1007/s10107-024-02090-3","DOIUrl":"https://doi.org/10.1007/s10107-024-02090-3","url":null,"abstract":"<p>Recently, convex nested stochastic composite optimization (NSCO) has received considerable interest for its applications in reinforcement learning and risk-averse optimization. However, existing NSCO algorithms have worse stochastic oracle complexities, by orders of magnitude, than those for simpler stochastic optimization problems without nested structures. Additionally, these algorithms require all outer-layer functions to be smooth, a condition violated by some important applications. This raises a question regarding whether the nested composition make stochastic optimization more difficult in terms of oracle complexity. In this paper, we answer the question by developing order-optimal algorithms for convex NSCO problems constructed from an arbitrary composition of smooth, structured non-smooth, and general non-smooth layer functions. When all outer-layer functions are smooth, we propose a stochastic sequential dual (SSD) method to achieve an oracle complexity of <span>(mathcal {O}(1/epsilon ^2))</span> (resp., <span>(mathcal {O}(1/epsilon ))</span>) when the problem is convex (resp., strongly convex). If any outer-layer function is non-smooth, we propose a non-smooth stochastic sequential dual (nSSD) method to achieve an <span>(mathcal {O}(1/epsilon ^2))</span> oracle complexity. We provide a lower complexity bound to show the latter <span>(mathcal {O}(1/epsilon ^2))</span> complexity to be unimprovable, even under a strongly convex setting. All these complexity results seem to be new in the literature, and they indicate that convex NSCO problems have the same order of oracle complexity as problems without nested composition, except in the strongly convex and outer non-smooth cases.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the directional asymptotic approach in optimization theory 论优化理论中的定向渐近方法
IF 2.7 2区 数学
Mathematical Programming Pub Date : 2024-07-05 DOI: 10.1007/s10107-024-02089-w
Matúš Benko, Patrick Mehlitz
{"title":"On the directional asymptotic approach in optimization theory","authors":"Matúš Benko, Patrick Mehlitz","doi":"10.1007/s10107-024-02089-w","DOIUrl":"https://doi.org/10.1007/s10107-024-02089-w","url":null,"abstract":"<p>As a starting point of our research, we show that, for a fixed order <span>(gamma ge 1)</span>, each local minimizer of a rather general nonsmooth optimization problem in Euclidean spaces is either M-stationary in the classical sense (corresponding to stationarity of order 1), satisfies stationarity conditions in terms of a coderivative construction of order <span>(gamma )</span>, or is asymptotically stationary with respect to a critical direction as well as order <span>(gamma )</span> in a certain sense. By ruling out the latter case with a constraint qualification not stronger than directional metric subregularity, we end up with new necessary optimality conditions comprising a mixture of limiting variational tools of orders 1 and <span>(gamma )</span>. These abstract findings are carved out for the broad class of geometric constraints and <span>(gamma :=2)</span>, and visualized by examples from complementarity-constrained and nonlinear semidefinite optimization. As a byproduct of the particular setting <span>(gamma :=1)</span>, our general approach yields new so-called directional asymptotic regularity conditions which serve as constraint qualifications guaranteeing M-stationarity of local minimizers. We compare these new regularity conditions with standard constraint qualifications from nonsmooth optimization. Further, we extend directional concepts of pseudo- and quasi-normality to arbitrary set-valued mappings. It is shown that these properties provide sufficient conditions for the validity of directional asymptotic regularity. Finally, a novel coderivative-like variational tool is used to construct sufficient conditions for the presence of directional asymptotic regularity. For geometric constraints, it is illustrated that all appearing objects can be calculated in terms of initial problem data.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"30 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Matrix discrepancy and the log-rank conjecture 矩阵差异和对数秩猜想
IF 2.7 2区 数学
Mathematical Programming Pub Date : 2024-07-05 DOI: 10.1007/s10107-024-02117-9
Benny Sudakov, István Tomon
{"title":"Matrix discrepancy and the log-rank conjecture","authors":"Benny Sudakov, István Tomon","doi":"10.1007/s10107-024-02117-9","DOIUrl":"https://doi.org/10.1007/s10107-024-02117-9","url":null,"abstract":"<p>Given an <span>(mtimes n)</span> binary matrix <i>M</i> with <span>(|M|=pcdot mn)</span> (where |<i>M</i>| denotes the number of 1 entries), define the <i>discrepancy</i> of <i>M</i> as <span>({{,textrm{disc},}}(M)=displaystyle max nolimits _{Xsubset [m], Ysubset [n]}big ||M[Xtimes Y]|-p|X|cdot |Y|big |)</span>. Using semidefinite programming and spectral techniques, we prove that if <span>({{,textrm{rank},}}(M)le r)</span> and <span>(ple 1/2)</span>, then </p><span>$$begin{aligned}{{,textrm{disc},}}(M)ge Omega (mn)cdot min left{ p,frac{p^{1/2}}{sqrt{r}}right} .end{aligned}$$</span><p>We use this result to obtain a modest improvement of Lovett’s best known upper bound on the log-rank conjecture. We prove that any <span>(mtimes n)</span> binary matrix <i>M</i> of rank at most <i>r</i> contains an <span>((mcdot 2^{-O(sqrt{r})})times (ncdot 2^{-O(sqrt{r})}))</span> sized all-1 or all-0 submatrix, which implies that the deterministic communication complexity of any Boolean function of rank <i>r</i> is at most <span>(O(sqrt{r}))</span>.\u0000</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"5 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On solving a rank regularized minimization problem via equivalent factorized column-sparse regularized models 通过等效因子化列稀疏正则化模型求解秩正则化最小化问题
IF 2.7 2区 数学
Mathematical Programming Pub Date : 2024-07-03 DOI: 10.1007/s10107-024-02103-1
Wenjing Li, Wei Bian, Kim-Chuan Toh
{"title":"On solving a rank regularized minimization problem via equivalent factorized column-sparse regularized models","authors":"Wenjing Li, Wei Bian, Kim-Chuan Toh","doi":"10.1007/s10107-024-02103-1","DOIUrl":"https://doi.org/10.1007/s10107-024-02103-1","url":null,"abstract":"<p>Rank regularized minimization problem is an ideal model for the low-rank matrix completion/recovery problem. The matrix factorization approach can transform the high-dimensional rank regularized problem to a low-dimensional factorized column-sparse regularized problem. The latter can greatly facilitate fast computations in applicable algorithms, but needs to overcome the simultaneous non-convexity of the loss and regularization functions. In this paper, we consider the factorized column-sparse regularized model. Firstly, we optimize this model with bound constraints, and establish a certain equivalence between the optimized factorization problem and rank regularized problem. Further, we strengthen the optimality condition for stationary points of the factorization problem and define the notion of strong stationary point. Moreover, we establish the equivalence between the factorization problem and its nonconvex relaxation in the sense of global minimizers and strong stationary points. To solve the factorization problem, we design two types of algorithms and give an adaptive method to reduce their computation. The first algorithm is from the relaxation point of view and its iterates own some properties from global minimizers of the factorization problem after finite iterations. We give some analysis on the convergence of its iterates to a strong stationary point. The second algorithm is designed for directly solving the factorization problem. We improve the PALM algorithm introduced by Bolte et al. (Math Program Ser A 146:459–494, 2014) for the factorization problem and give its improved convergence results. Finally, we conduct numerical experiments to show the promising performance of the proposed model and algorithms for low-rank matrix completion.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"46 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141526139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the tightness of an SDP relaxation for homogeneous QCQP with three real or four complex homogeneous constraints 论具有三个实数或四个复数同质约束条件的同质 QCQP 的 SDP 松弛的紧密性
IF 2.7 2区 数学
Mathematical Programming Pub Date : 2024-06-21 DOI: 10.1007/s10107-024-02105-z
Wenbao Ai, Wei Liang, Jianhua Yuan
{"title":"On the tightness of an SDP relaxation for homogeneous QCQP with three real or four complex homogeneous constraints","authors":"Wenbao Ai, Wei Liang, Jianhua Yuan","doi":"10.1007/s10107-024-02105-z","DOIUrl":"https://doi.org/10.1007/s10107-024-02105-z","url":null,"abstract":"<p>In this paper, we consider the problem of minimizing a general homogeneous quadratic function, subject to three real or four complex homogeneous quadratic inequality or equality constraints. For this problem, we present a sufficient and necessary test condition to detect whether its standard semi-definite programming (SDP) relaxation is tight or not. This test condition is based on only an optimal solution pair of the SDP relaxation and its dual. When the tightness is confirmed, a global optimal solution of the original problem is found simultaneously in polynomial-time. While the tightness does not hold, the SDP relaxation and its dual are proved to have the unique optimal solutions. Moreover, the Lagrangian version of such the test condition is specified for non-homogeneous cases. Based on the Lagrangian version, it is proved that several latest sufficient conditions to test the SDP tightness are contained by our test condition under the situation of two constraints. Thirdly, as an application of the test condition, S-lemma and Yuan’s lemma are generalized to three real and four complex quadratic forms first under certain exact conditions, which improves some classical results in literature. Finally, a counterexample is presented to show that the test condition cannot be simply extended to four real or five complex homogeneous quadratic constraints.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"57 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141503531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A slope generalization of Attouch theorem 阿图什定理的斜率一般化
IF 2.7 2区 数学
Mathematical Programming Pub Date : 2024-06-20 DOI: 10.1007/s10107-024-02108-w
Aris Daniilidis, David Salas, Sebastián Tapia-García
{"title":"A slope generalization of Attouch theorem","authors":"Aris Daniilidis, David Salas, Sebastián Tapia-García","doi":"10.1007/s10107-024-02108-w","DOIUrl":"https://doi.org/10.1007/s10107-024-02108-w","url":null,"abstract":"<p>A classical result of variational analysis, known as Attouch theorem, establishes an equivalence between epigraphical convergence of a sequence of proper convex lower semicontinuous functions and graphical convergence of the corresponding subdifferential maps up to a normalization condition which fixes the integration constant. In this work, we show that in finite dimensions and under a mild boundedness assumption, we can replace subdifferentials (sets of vectors) by slopes (scalars, corresponding to the distance of the subdifferentials to zero) and still obtain the same characterization: namely, the epigraphical convergence of functions is equivalent to the epigraphical convergence of their slopes. This surprising result goes in line with recent developments on slope determination (Boulmezaoud et al. in SIAM J Optim 28(3):2049–2066, 2018; Pérez-Aros et al. in Math Program 190(1–2):561-583, 2021) and slope sensitivity (Daniilidis and Drusvyatskiy in Proc Am Math Soc 151(11):4751-4756, 2023) for convex functions.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"21 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141503532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized scaling for the constrained maximum-entropy sampling problem 受限最大熵抽样问题的广义缩放
IF 2.7 2区 数学
Mathematical Programming Pub Date : 2024-06-20 DOI: 10.1007/s10107-024-02101-3
Zhongzhu Chen, Marcia Fampa, Jon Lee
{"title":"Generalized scaling for the constrained maximum-entropy sampling problem","authors":"Zhongzhu Chen, Marcia Fampa, Jon Lee","doi":"10.1007/s10107-024-02101-3","DOIUrl":"https://doi.org/10.1007/s10107-024-02101-3","url":null,"abstract":"<p>The best practical techniques for exact solution of instances of the constrained maximum-entropy sampling problem, a discrete-optimization problem arising in the design of experiments, are via a branch-and-bound framework, working with a variety of concave continuous relaxations of the objective function. A standard and computationally-important bound-enhancement technique in this context is <i>(ordinary) scaling</i>, via a single positive parameter. Scaling adjusts the shape of continuous relaxations to reduce the gaps between the upper bounds and the optimal value. We extend this technique to <i>generalized scaling</i>, employing a positive vector of parameters, which allows much more flexibility and thus potentially reduces the gaps further. We give mathematical results aimed at supporting algorithmic methods for computing optimal generalized scalings, and we give computational results demonstrating the performance of generalized scaling on benchmark problem instances.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"25 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141503533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A PTAS for the horizontal rectangle stabbing problem 水平矩形刺入问题的 PTAS
IF 2.7 2区 数学
Mathematical Programming Pub Date : 2024-06-13 DOI: 10.1007/s10107-024-02106-y
Arindam Khan, Aditya Subramanian, Andreas Wiese
{"title":"A PTAS for the horizontal rectangle stabbing problem","authors":"Arindam Khan, Aditya Subramanian, Andreas Wiese","doi":"10.1007/s10107-024-02106-y","DOIUrl":"https://doi.org/10.1007/s10107-024-02106-y","url":null,"abstract":"<p>We study rectangle stabbing problems in which we are given <i>n</i> axis-aligned rectangles in the plane that we want to <i>stab</i>, that is, we want to select line segments such that for each given rectangle there is a line segment that intersects two opposite edges of it. In the <i>horizontal rectangle stabbing problem</i> (<span>Stabbing</span>), the goal is to find a set of horizontal line segments of minimum total length such that all rectangles are stabbed. In the <i>horizontal–vertical stabbing problem</i> (<span>HV-Stabbing</span>), the goal is to find a set of rectilinear (that is, either vertical or horizontal) line segments of minimum total length such that all rectangles are stabbed. Both variants are NP-hard. Chan et al. (ISAAC, 2018) initiated the study of these problems by providing constant approximation algorithms. Recently, Eisenbrand et al. (A QPTAS for stabbing rectangles, 2021) have presented a QPTAS and a polynomial-time 8-approximation algorithm for <span>Stabbing</span>, but it was open whether the problem admits a PTAS. In this paper, we obtain a PTAS for <span>Stabbing</span>, settling this question. For <span>HV-Stabbing</span>, we obtain a <span>((2+varepsilon ))</span>-approximation. We also obtain PTASs for special cases of <span>HV-Stabbing</span>: (i) when all rectangles are squares, (ii) when each rectangle’s width is at most its height, and (iii) when all rectangles are <span>(delta )</span>-large, that is, have at least one edge whose length is at least <span>(delta )</span>, while all edge lengths are at most 1. Our result also implies improved approximations for other problems such as <i>generalized minimum Manhattan network</i>.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"46 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141503476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信