{"title":"MIQCP 中的单值加强和唯一提升","authors":"Antonia Chmiela, Gonzalo Muñoz, Felipe Serrano","doi":"10.1007/s10107-024-02112-0","DOIUrl":null,"url":null,"abstract":"<p>Using the recently proposed maximal quadratic-free sets and the well-known monoidal strengthening procedure, we show how to improve intersection cuts for quadratically-constrained optimization problems by exploiting integrality requirements. We provide an explicit construction that allows an efficient implementation of the strengthened cuts along with computational results showing their improvements over the standard intersection cuts. We also show that, in our setting, there is <i>unique lifting</i> which implies that our strengthening procedure is generating the best possible cut coefficients for the integer variables.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monoidal strengthening and unique lifting in MIQCPs\",\"authors\":\"Antonia Chmiela, Gonzalo Muñoz, Felipe Serrano\",\"doi\":\"10.1007/s10107-024-02112-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using the recently proposed maximal quadratic-free sets and the well-known monoidal strengthening procedure, we show how to improve intersection cuts for quadratically-constrained optimization problems by exploiting integrality requirements. We provide an explicit construction that allows an efficient implementation of the strengthened cuts along with computational results showing their improvements over the standard intersection cuts. We also show that, in our setting, there is <i>unique lifting</i> which implies that our strengthening procedure is generating the best possible cut coefficients for the integer variables.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02112-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02112-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Monoidal strengthening and unique lifting in MIQCPs
Using the recently proposed maximal quadratic-free sets and the well-known monoidal strengthening procedure, we show how to improve intersection cuts for quadratically-constrained optimization problems by exploiting integrality requirements. We provide an explicit construction that allows an efficient implementation of the strengthened cuts along with computational results showing their improvements over the standard intersection cuts. We also show that, in our setting, there is unique lifting which implies that our strengthening procedure is generating the best possible cut coefficients for the integer variables.