Matrix discrepancy and the log-rank conjecture

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Benny Sudakov, István Tomon
{"title":"Matrix discrepancy and the log-rank conjecture","authors":"Benny Sudakov, István Tomon","doi":"10.1007/s10107-024-02117-9","DOIUrl":null,"url":null,"abstract":"<p>Given an <span>\\(m\\times n\\)</span> binary matrix <i>M</i> with <span>\\(|M|=p\\cdot mn\\)</span> (where |<i>M</i>| denotes the number of 1 entries), define the <i>discrepancy</i> of <i>M</i> as <span>\\({{\\,\\textrm{disc}\\,}}(M)=\\displaystyle \\max \\nolimits _{X\\subset [m], Y\\subset [n]}\\big ||M[X\\times Y]|-p|X|\\cdot |Y|\\big |\\)</span>. Using semidefinite programming and spectral techniques, we prove that if <span>\\({{\\,\\textrm{rank}\\,}}(M)\\le r\\)</span> and <span>\\(p\\le 1/2\\)</span>, then </p><span>$$\\begin{aligned}{{\\,\\textrm{disc}\\,}}(M)\\ge \\Omega (mn)\\cdot \\min \\left\\{ p,\\frac{p^{1/2}}{\\sqrt{r}}\\right\\} .\\end{aligned}$$</span><p>We use this result to obtain a modest improvement of Lovett’s best known upper bound on the log-rank conjecture. We prove that any <span>\\(m\\times n\\)</span> binary matrix <i>M</i> of rank at most <i>r</i> contains an <span>\\((m\\cdot 2^{-O(\\sqrt{r})})\\times (n\\cdot 2^{-O(\\sqrt{r})})\\)</span> sized all-1 or all-0 submatrix, which implies that the deterministic communication complexity of any Boolean function of rank <i>r</i> is at most <span>\\(O(\\sqrt{r})\\)</span>.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02117-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Given an \(m\times n\) binary matrix M with \(|M|=p\cdot mn\) (where |M| denotes the number of 1 entries), define the discrepancy of M as \({{\,\textrm{disc}\,}}(M)=\displaystyle \max \nolimits _{X\subset [m], Y\subset [n]}\big ||M[X\times Y]|-p|X|\cdot |Y|\big |\). Using semidefinite programming and spectral techniques, we prove that if \({{\,\textrm{rank}\,}}(M)\le r\) and \(p\le 1/2\), then

$$\begin{aligned}{{\,\textrm{disc}\,}}(M)\ge \Omega (mn)\cdot \min \left\{ p,\frac{p^{1/2}}{\sqrt{r}}\right\} .\end{aligned}$$

We use this result to obtain a modest improvement of Lovett’s best known upper bound on the log-rank conjecture. We prove that any \(m\times n\) binary matrix M of rank at most r contains an \((m\cdot 2^{-O(\sqrt{r})})\times (n\cdot 2^{-O(\sqrt{r})})\) sized all-1 or all-0 submatrix, which implies that the deterministic communication complexity of any Boolean function of rank r is at most \(O(\sqrt{r})\).

矩阵差异和对数秩猜想
给定一个 \(m\times n\) 二进制矩阵 M,其 \(|M|=p\cdot mn\) (其中 |M| 表示 1 条目的数量),定义 M 的差异为 \({{\、\(M)=\displaystyle \max \nolimits _{X\subset [m], Y\subset [n]}\big |||M[X\times Y]|-p|X|\cdot |Y|\big |\)。利用半定量编程和谱技术,我们证明如果({{\,\textrm{rank}\,}}(M)\le r\) and\(p\le 1/2\)、then $$\begin{aligned}{{,\textrm{disc}\,}}(M)\ge \Omega (mn)\cdot \min \left\{ p,\frac{p^{1/2}}\{sqrt{r}}\right\} .\end{aligned}$$我们利用这个结果对洛维特最著名的对数秩猜想的上界进行了适度的改进。我们证明了任何秩为 r 的二进制矩阵 M 都包含一个 \((m\cdot 2^{-O(\sqrt{r})})\times (n\cdot 2^{-O(\sqrt{r})})\) 大小的 all-1 或 all-0 子矩阵,这意味着任何秩为 r 的布尔函数的确定性通信复杂度最多为 \(O(\sqrt{r})\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信