Daniel Dadush, Zhuan Khye Koh, Bento Natura, László A. Végh
{"title":"通过电路失衡论电路直径边界","authors":"Daniel Dadush, Zhuan Khye Koh, Bento Natura, László A. Végh","doi":"10.1007/s10107-024-02107-x","DOIUrl":null,"url":null,"abstract":"<p>We study the circuit diameter of polyhedra, introduced by Borgwardt, Finhold, and Hemmecke (SIAM J. Discrete Math. <b>29</b>(1), 113–121 (2015)) as a relaxation of the combinatorial diameter. We show that the circuit diameter of a system <span>\\(\\{x\\in \\mathbb {R}^n:\\, Ax=b,\\, \\mathbb {0}\\le x\\le u\\}\\)</span> for <span>\\(A\\in \\mathbb {R}^{m\\times n}\\)</span> is bounded by <span>\\(O(m\\min \\{m, n - m\\}\\log (m+\\kappa _A)+n\\log n)\\)</span>, where <span>\\(\\kappa _A\\)</span> is the circuit imbalance measure of the constraint matrix. This yields a strongly polynomial circuit diameter bound if e.g., all entries of <i>A</i> have polynomially bounded encoding length in <i>n</i>. Further, we present circuit augmentation algorithms for LPs using the minimum-ratio circuit cancelling rule. Even though the standard minimum-ratio circuit cancelling algorithm is not finite in general, our variant can solve an LP in <span>\\(O(mn^2\\log (n+\\kappa _A))\\)</span> augmentation steps.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On circuit diameter bounds via circuit imbalances\",\"authors\":\"Daniel Dadush, Zhuan Khye Koh, Bento Natura, László A. Végh\",\"doi\":\"10.1007/s10107-024-02107-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the circuit diameter of polyhedra, introduced by Borgwardt, Finhold, and Hemmecke (SIAM J. Discrete Math. <b>29</b>(1), 113–121 (2015)) as a relaxation of the combinatorial diameter. We show that the circuit diameter of a system <span>\\\\(\\\\{x\\\\in \\\\mathbb {R}^n:\\\\, Ax=b,\\\\, \\\\mathbb {0}\\\\le x\\\\le u\\\\}\\\\)</span> for <span>\\\\(A\\\\in \\\\mathbb {R}^{m\\\\times n}\\\\)</span> is bounded by <span>\\\\(O(m\\\\min \\\\{m, n - m\\\\}\\\\log (m+\\\\kappa _A)+n\\\\log n)\\\\)</span>, where <span>\\\\(\\\\kappa _A\\\\)</span> is the circuit imbalance measure of the constraint matrix. This yields a strongly polynomial circuit diameter bound if e.g., all entries of <i>A</i> have polynomially bounded encoding length in <i>n</i>. Further, we present circuit augmentation algorithms for LPs using the minimum-ratio circuit cancelling rule. Even though the standard minimum-ratio circuit cancelling algorithm is not finite in general, our variant can solve an LP in <span>\\\\(O(mn^2\\\\log (n+\\\\kappa _A))\\\\)</span> augmentation steps.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02107-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02107-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究由 Borgwardt、Finhold 和 Hemmecke(SIAM J. Discrete Math.29(1), 113-121 (2015))作为组合直径的放松而引入的。我们证明了一个系统的电路直径(\{x\in \mathbb {R}^n:\Ax=b,\, \mathbb {0}\le x\le u\}\) for \(A\in \mathbb {R}^{m\times n}\) is bounded by \(O(m\min \{m, n - m\}log (m+\kappa _A)+n\log n)\), where \(\kappa _A\) is the circuit imbalance measure of the constraint matrix.如果 A 的所有条目在 n 中的编码长度都是多项式约束的,那么这就产生了一个强多项式电路直径约束。尽管标准的最小比值电路消除算法在一般情况下不是有限的,但我们的变体可以在(O(mn^2\log (n+\kappa _A))增强步骤内解决 LP。
We study the circuit diameter of polyhedra, introduced by Borgwardt, Finhold, and Hemmecke (SIAM J. Discrete Math. 29(1), 113–121 (2015)) as a relaxation of the combinatorial diameter. We show that the circuit diameter of a system \(\{x\in \mathbb {R}^n:\, Ax=b,\, \mathbb {0}\le x\le u\}\) for \(A\in \mathbb {R}^{m\times n}\) is bounded by \(O(m\min \{m, n - m\}\log (m+\kappa _A)+n\log n)\), where \(\kappa _A\) is the circuit imbalance measure of the constraint matrix. This yields a strongly polynomial circuit diameter bound if e.g., all entries of A have polynomially bounded encoding length in n. Further, we present circuit augmentation algorithms for LPs using the minimum-ratio circuit cancelling rule. Even though the standard minimum-ratio circuit cancelling algorithm is not finite in general, our variant can solve an LP in \(O(mn^2\log (n+\kappa _A))\) augmentation steps.