通过电路失衡论电路直径边界

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Daniel Dadush, Zhuan Khye Koh, Bento Natura, László A. Végh
{"title":"通过电路失衡论电路直径边界","authors":"Daniel Dadush, Zhuan Khye Koh, Bento Natura, László A. Végh","doi":"10.1007/s10107-024-02107-x","DOIUrl":null,"url":null,"abstract":"<p>We study the circuit diameter of polyhedra, introduced by Borgwardt, Finhold, and Hemmecke (SIAM J. Discrete Math. <b>29</b>(1), 113–121 (2015)) as a relaxation of the combinatorial diameter. We show that the circuit diameter of a system <span>\\(\\{x\\in \\mathbb {R}^n:\\, Ax=b,\\, \\mathbb {0}\\le x\\le u\\}\\)</span> for <span>\\(A\\in \\mathbb {R}^{m\\times n}\\)</span> is bounded by <span>\\(O(m\\min \\{m, n - m\\}\\log (m+\\kappa _A)+n\\log n)\\)</span>, where <span>\\(\\kappa _A\\)</span> is the circuit imbalance measure of the constraint matrix. This yields a strongly polynomial circuit diameter bound if e.g., all entries of <i>A</i> have polynomially bounded encoding length in <i>n</i>. Further, we present circuit augmentation algorithms for LPs using the minimum-ratio circuit cancelling rule. Even though the standard minimum-ratio circuit cancelling algorithm is not finite in general, our variant can solve an LP in <span>\\(O(mn^2\\log (n+\\kappa _A))\\)</span> augmentation steps.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On circuit diameter bounds via circuit imbalances\",\"authors\":\"Daniel Dadush, Zhuan Khye Koh, Bento Natura, László A. Végh\",\"doi\":\"10.1007/s10107-024-02107-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the circuit diameter of polyhedra, introduced by Borgwardt, Finhold, and Hemmecke (SIAM J. Discrete Math. <b>29</b>(1), 113–121 (2015)) as a relaxation of the combinatorial diameter. We show that the circuit diameter of a system <span>\\\\(\\\\{x\\\\in \\\\mathbb {R}^n:\\\\, Ax=b,\\\\, \\\\mathbb {0}\\\\le x\\\\le u\\\\}\\\\)</span> for <span>\\\\(A\\\\in \\\\mathbb {R}^{m\\\\times n}\\\\)</span> is bounded by <span>\\\\(O(m\\\\min \\\\{m, n - m\\\\}\\\\log (m+\\\\kappa _A)+n\\\\log n)\\\\)</span>, where <span>\\\\(\\\\kappa _A\\\\)</span> is the circuit imbalance measure of the constraint matrix. This yields a strongly polynomial circuit diameter bound if e.g., all entries of <i>A</i> have polynomially bounded encoding length in <i>n</i>. Further, we present circuit augmentation algorithms for LPs using the minimum-ratio circuit cancelling rule. Even though the standard minimum-ratio circuit cancelling algorithm is not finite in general, our variant can solve an LP in <span>\\\\(O(mn^2\\\\log (n+\\\\kappa _A))\\\\)</span> augmentation steps.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02107-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02107-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究由 Borgwardt、Finhold 和 Hemmecke(SIAM J. Discrete Math.29(1), 113-121 (2015))作为组合直径的放松而引入的。我们证明了一个系统的电路直径(\{x\in \mathbb {R}^n:\Ax=b,\, \mathbb {0}\le x\le u\}\) for \(A\in \mathbb {R}^{m\times n}\) is bounded by \(O(m\min \{m, n - m\}log (m+\kappa _A)+n\log n)\), where \(\kappa _A\) is the circuit imbalance measure of the constraint matrix.如果 A 的所有条目在 n 中的编码长度都是多项式约束的,那么这就产生了一个强多项式电路直径约束。尽管标准的最小比值电路消除算法在一般情况下不是有限的,但我们的变体可以在(O(mn^2\log (n+\kappa _A))增强步骤内解决 LP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On circuit diameter bounds via circuit imbalances

On circuit diameter bounds via circuit imbalances

We study the circuit diameter of polyhedra, introduced by Borgwardt, Finhold, and Hemmecke (SIAM J. Discrete Math. 29(1), 113–121 (2015)) as a relaxation of the combinatorial diameter. We show that the circuit diameter of a system \(\{x\in \mathbb {R}^n:\, Ax=b,\, \mathbb {0}\le x\le u\}\) for \(A\in \mathbb {R}^{m\times n}\) is bounded by \(O(m\min \{m, n - m\}\log (m+\kappa _A)+n\log n)\), where \(\kappa _A\) is the circuit imbalance measure of the constraint matrix. This yields a strongly polynomial circuit diameter bound if e.g., all entries of A have polynomially bounded encoding length in n. Further, we present circuit augmentation algorithms for LPs using the minimum-ratio circuit cancelling rule. Even though the standard minimum-ratio circuit cancelling algorithm is not finite in general, our variant can solve an LP in \(O(mn^2\log (n+\kappa _A))\) augmentation steps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信