Materials Today Energy最新文献

筛选
英文 中文
Na4Fe1.5Mn1.5(PO4)2(P2O7): A Low-Cost and Earth-Abundant Cathode for Robust Sodium Storage Na4Fe1.5Mn1.5(PO4)2(P2O7):一种低成本、富含地球资源的稳健钠储存阴极
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-03-08 DOI: 10.1016/j.mtener.2024.101552
Hao Fan, Congcong Cai, Xiaobin Liao, Ping Hu, Xinyuan Li, Jiantao Li, Sungsik Lee, Changliang Chen, Ting Zhu, Zhuo Chen, Mengyao Wang, Liqiang Mai, Liang Zhou
{"title":"Na4Fe1.5Mn1.5(PO4)2(P2O7): A Low-Cost and Earth-Abundant Cathode for Robust Sodium Storage","authors":"Hao Fan, Congcong Cai, Xiaobin Liao, Ping Hu, Xinyuan Li, Jiantao Li, Sungsik Lee, Changliang Chen, Ting Zhu, Zhuo Chen, Mengyao Wang, Liqiang Mai, Liang Zhou","doi":"10.1016/j.mtener.2024.101552","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101552","url":null,"abstract":"The mixed compounds of phosphates and pyrophosphates are attractive cathodes for sodium-ion batteries (SIBs) owing to their robust open framework structure and superior diffusion dynamics. However, most reported mixed phosphate cathodes generally suffer from low operating potential. Herein, we develop a bimetallic NaFeMn(PO)(PO)/C-rGO (NFMPP/C-rGO) cathode, which possesses two working plateaus at 2.92 and 3.95 V. The obtained NFMPP/C-rGO demonstrates a stable high capacity of over 120 mAh g at 0.1 C. XRD characterization discloses a solid solution reaction for the Fe redox couple and a two-phase reaction for the Mn redox couple. First-principles calculations reveal the migration of Na in NFMPP has low barriers. This work provides a new, low-cost, earth-abundant, and stable cathode choice for practical SIBs.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"1 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green-Solvent Processable Polymeric Hole Transport Materials with Functional Groups for Inverted Perovskite Solar Cell 用于反相包晶石太阳能电池的含功能基团的绿色溶剂可加工聚合物空穴传输材料
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-03-08 DOI: 10.1016/j.mtener.2024.101549
Mei Zhao, Quanping Wu, Pengcheng Liu, Ming Luo, Jia He, Song Xue, Yonglian Xiong, Xueping Zong
{"title":"Green-Solvent Processable Polymeric Hole Transport Materials with Functional Groups for Inverted Perovskite Solar Cell","authors":"Mei Zhao, Quanping Wu, Pengcheng Liu, Ming Luo, Jia He, Song Xue, Yonglian Xiong, Xueping Zong","doi":"10.1016/j.mtener.2024.101549","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101549","url":null,"abstract":"Exploring novel hole transporting materials (HTMs) with high hole mobility and eco-friendly processability are imperative for the commercialization of perovskite solar cells (PSCs). However, there is a “trade-off” that the introduction of large-conjugated units aiming to ensure high hole mobility, inevitably compromises the green-solvent solubility of HTMs. In this work, a hybrid strategy of rigidity and flexibility is proposed, in which the conjugated unit is assembled by the rigid binaphthylamine core, and the amide-bond constitutes the flexible backbone. Polar solubilizing units ethylenedioxythiophene and thiophene are used as bridges to construct two kinds of polymers, cited as EDOT-SMe and T-SMe, respectively. Both polymers achieve high hole mobility, well-matched energy levels and efficient defect passivation effect toward the perovskite films. When processing the HTM films with the green solvent (2-methylanisole), the corresponding PSCs deliver fill factors as high as 82.7% for EDOT-SMe and 81.9% for T-SMe, respectively. Consequently, s of 20.25% for EDOT-SMe and 20.09% for T-SMe are realized, outperforming that of commercial polymer poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA, 19.71%). Moreover, PSCs with these polyamides achieve good long-term stability. This work paves a new path for exploring efficient and green-solvent processable polymeric HTMs.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"1 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving high carrier mobility and thermoelectric performance in nearly twin-free rhombohedral GeTe (00l) films 在近乎无孪晶的斜面 GeTe (00l) 薄膜中实现高载流子迁移率和热电性能
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-03-08 DOI: 10.1016/j.mtener.2024.101550
Tuo Chen, Qian Xiang, Haoran Ge, Ziwei Li, Fan Yan, Jiahong Cheng, Min Hong, Yubo Luo, Junyou Yang, Yong Liu, Wei Liu, Xinfeng Tang
{"title":"Achieving high carrier mobility and thermoelectric performance in nearly twin-free rhombohedral GeTe (00l) films","authors":"Tuo Chen, Qian Xiang, Haoran Ge, Ziwei Li, Fan Yan, Jiahong Cheng, Min Hong, Yubo Luo, Junyou Yang, Yong Liu, Wei Liu, Xinfeng Tang","doi":"10.1016/j.mtener.2024.101550","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101550","url":null,"abstract":"GeTe-based thermoelectric (TE) films have garnered significant attentions due to their promising TE performance near room temperature. However, it is challenging to further optimizing the TE performance due to the inferior carrier mobility () and the excessively high hole density (). Herein, we developed a novel method based on molecular beam epitaxy (MBE) technique to successfully fabricate nearly twin-free GeTe (00) films incorporating BiTe buffer layers to alleviate epitaxial strain. Consequently, was significantly enhanced. Additionally, through comprehensively investigating the processing conditions, we found that substrate temperature and Te/GeTe flux ratio can shape intrinsic atomic defects and further decrease . With the optimal synthesis and processing conditions, the GeTe film achieves optimized of 3.44×10 cm and a high of 73.31 cmVs, which lead to the highest room-temperature power factor of 2.67 mWmK, outperforming the values of other GeTe films. This work provides important guidance on fabricating twin-free GeTe films and on further improving their TE performance.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"99 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress on the preparation and application in photocatalysis of 2D MXene-based materials 二维二氧杂环烯基材料的制备和光催化应用的最新进展
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-03-07 DOI: 10.1016/j.mtener.2024.101547
Weichun Bai, Luyi Shi, Zhihang Li, Dan Liu, Yongmei Liang, Baochen Han, Jian Qi, Yaqiang Li
{"title":"Recent progress on the preparation and application in photocatalysis of 2D MXene-based materials","authors":"Weichun Bai, Luyi Shi, Zhihang Li, Dan Liu, Yongmei Liang, Baochen Han, Jian Qi, Yaqiang Li","doi":"10.1016/j.mtener.2024.101547","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101547","url":null,"abstract":"Since the discovery of MXene in 2011, its physical and chemical diversity has led to MXene being considered as a potential 2D material with a wide range of applications due to its tunable structure and rich surface chemistry. This review focuses on summarizing the preparation methods of MXene, MXene-based and MXene-derived two-dimensional photocatalysts and their application research progress in the field of photocatalysis. The preparation methods of MXene are described in detail from three aspects: wet etching method, anhydrous etching method and direct synthesis method. Meanwhile, the strategies for the insertion and layering of multilayer MXene and the synthesis process of MXene-based and MXene-derived photocatalysts are described. In addition, we present recent research on MXene-based and MXene-derived photocatalysts for environmental and energy applications, including water decomposition to release H, CO reduction, nitrogen fixation, and other photocatalytic applications. Finally, challenges and perspectives for MXene research are presented.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"42 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphologically Engineered Multi-component Organic Solar Cells with Stratified Donor Distribution and Alloyed Acceptors for Enhanced Efficiency and Stability 具有分层供体分布和合金受体的形态工程多组分有机太阳能电池,可提高效率和稳定性
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-03-07 DOI: 10.1016/j.mtener.2024.101548
Nan Zhang, Kui Jiang, Francis R. Lin, Yidan An, Gengxin Du, Tian Xia, Alex K.-Y. Jen, Hin-Lap Yip
{"title":"Morphologically Engineered Multi-component Organic Solar Cells with Stratified Donor Distribution and Alloyed Acceptors for Enhanced Efficiency and Stability","authors":"Nan Zhang, Kui Jiang, Francis R. Lin, Yidan An, Gengxin Du, Tian Xia, Alex K.-Y. Jen, Hin-Lap Yip","doi":"10.1016/j.mtener.2024.101548","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101548","url":null,"abstract":"The strategy of integrating multiple components within the bulk-heterojunction layer of organic photovoltaics (OPVs) has proven effective in enhancing the device performance and demonstrates broad potential applications. Nonetheless, achieving precise control over the morphology in such a multifaceted system presents a significant challenge. In this work, we introduce an innovative sequential casting technique to fabricate highly efficient quaternary OPVs, with a meticulously tailored morphology featuring layers of stratified donor distribution and composite alloyed acceptors. The layered configuration of D18/PTQ10, with distinct crystalline domains, establishes a dedicated hole-transport pathway, while the alloyed BTP-eC9:Y6-O acceptors are evenly dispersed across the layered D18/PTQ10 donor phase. This carefully crafted morphology presents a gradient and interpenetrated donor/acceptor phase separation at an ideal length scale, which facilitates exciton dissociation, minimizes energetic disorder, and mitigates recombination. As a result, a power conversion efficiency close to 19% with excellent operational stability (extrapolated =818 h) was achieved. This work offers valuable insights into the morphological engineering of multi-component OPVs for improved performance.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"14 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140128064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Slug flow synthesis of NCMA: Effect of substitution of cobalt with aluminum on the electrochemical performance of Ni-rich cathode for lithium-ion battery 蛞蝓流合成 NCMA:铝替代钴对锂离子电池富镍正极电化学性能的影响
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-03-02 DOI: 10.1016/j.mtener.2024.101545
Arjun Patel, Sourav Mallick, Jethrine H. Mugumya, Nicolás Lopez-Riveira, Sunuk Kim, Mo Jiang, Mariappan Parans Paranthaman, Michael L. Rasche, Herman Lopez, Ram B. Gupta
{"title":"Slug flow synthesis of NCMA: Effect of substitution of cobalt with aluminum on the electrochemical performance of Ni-rich cathode for lithium-ion battery","authors":"Arjun Patel, Sourav Mallick, Jethrine H. Mugumya, Nicolás Lopez-Riveira, Sunuk Kim, Mo Jiang, Mariappan Parans Paranthaman, Michael L. Rasche, Herman Lopez, Ram B. Gupta","doi":"10.1016/j.mtener.2024.101545","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101545","url":null,"abstract":"Nickle-rich Li[NiCoMn]O (x, y ≤ 0.1) (NCM) layered materials are known as promising cathode materials for next-generation lithium-ion batteries and electric vehicles owing to their high reversible capacity and high operating voltage of up to 3.6 vs Li/Li. However, issues, such as irreversible phase transition, cation mixing, microcrack formation, thermal and structural stability of the material prevent its widespread adoption. Although, cation doping is a well-known technique to enhance the electrochemical performance of the NCM-based cathode material, the performance of the material is very sensitive to the doping amount. In this study, three Al-doped quaternary Ni-rich cathode materials Li[NiCoMnAl]O (where, x= 0 - 0.04) (NCMA) are synthesized through three-phase slug-flow based continuous manufacturing process followed by high temperature calcination to study the effect of Al-doping on the performance of the cathode material while reducing Co. The slug flow-based production platform has several advantages, like particle size uniformity, high production rate, and homogeneity in elemental distribution. It is found that with an increase in Al content, the specific capacity decreases but the cyclic stability and rate capability increases. Optimum Al-doping not only compensates for the adverse effect of low Co by decreasing the extent of cation mixing but also minimizes the electrode polarization and cracking of the particles.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"8 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140055912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meliorative dielectric properties in core@double-shell structured Al@Al2O3@PDA/PVDF nanocomposites via decoupling the intra-particle polarization and inter-particle polarization 通过解耦粒子内极化和粒子间极化,改善核@双壳结构 Al@Al2O3@PDA/PVDF 纳米复合材料的介电性能
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-03-01 DOI: 10.1016/j.mtener.2024.101543
Xiaolong Chen, Wenying Zhou, Fang Wang, Hongju Wu, Shaolong Zhong, Bo Li
{"title":"Meliorative dielectric properties in core@double-shell structured Al@Al2O3@PDA/PVDF nanocomposites via decoupling the intra-particle polarization and inter-particle polarization","authors":"Xiaolong Chen, Wenying Zhou, Fang Wang, Hongju Wu, Shaolong Zhong, Bo Li","doi":"10.1016/j.mtener.2024.101543","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101543","url":null,"abstract":"Percolating polymeric composites present enormous potential owing to high dielectric constant () which can be realized near the percolation threshold, but the accompanied large loss forbids their extensive use in practice. Great efforts have been devoted to coating conductive particles with an insulating shell for constrained dielectric loss, yet they markedly reduce . In this work, we explore the poly(vinylidene fluoride, PVDF) composites with a serial of core@double-shell Al@AlO@PDA (polydopamine) nanoparticles with various PDA shell thicknesses. It reveals that the high of the nanocomposites results from a fast intra-particle polarization and a slow inter-particle polarization. The formation of double-shell enables the independent control of the two polarizations always coupled in traditional percolating composites. Through facilitating intra-particle polarization and repressing inter-particle polarization, the Al@AlO@PDA/PVDF can achieve a much higher and lower dielectric loss simultaneously, far exceeding the unmodified Al@AlO/PVDF. Moreover, the calculated activation energy of carrier migration in the Al@AlO@PDA/PVDF is obviously higher than that in untreated nanocomposites, indicating enhanced charge-trapping capability in the core@double-shell nanofillers composites. This core@double-shell strategy offers a new paradigm for the design and preparation of percolating composites with desirable dielectric performances.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"59 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140055913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advance in MOFs and MOF-based composites: synthesis, properties, and applications MOF 和 MOF 基复合材料的最新进展:合成、性能和应用
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-02-29 DOI: 10.1016/j.mtener.2024.101542
Asif Hayat, Sana Rauf, Basem Al Alwan, Atef El Jery, Naif Almuqati, Saad Melhi, Mohammed A. Amin, Yas Al-Hadeethi, Muhammad Sohail, Yasin Orooji, Weiqiang Lv
{"title":"Recent advance in MOFs and MOF-based composites: synthesis, properties, and applications","authors":"Asif Hayat, Sana Rauf, Basem Al Alwan, Atef El Jery, Naif Almuqati, Saad Melhi, Mohammed A. Amin, Yas Al-Hadeethi, Muhammad Sohail, Yasin Orooji, Weiqiang Lv","doi":"10.1016/j.mtener.2024.101542","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101542","url":null,"abstract":"Metal-organic frameworks (MOFs) are nanostructured polycrystalline materials where metal particles or groups are connected by an organic substituent, known as a ‘strut’ or ‘crosslinks’ having large surface area, high permeability, adjustable porosity, and flexible performance. Understanding the interactions and arrangement of MOFs is crucial for efficiently and precisely developing high-performance materials for sustainable applications. In recent years, there has been significant research interest in MOFs as a highly adaptable material for developing renewable and alternative energy conservation and transformation technologies, addressing global pollution and the impending fuel issue. This article provides an overview of the synthesis methods, parameters and characteristics of materials related to MOFs. It also assesses the relationship between the structure and functionality, examining factors that can be manipulated to improve their photocatalytic activity. Various examples were used to classify and examine the practical uses of MOFs, providing researchers with a new viewpoint on the compositional interaction in materials using MOFs. Finally, this study comprehensively analyzes the emerging trends and unresolved challenges in MOFs research across various functionalities.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"37 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast and simple deposition of thin film of Cu2-xS nanosheets on copper foil for solar energy harvesting via photo-thermo-electric conversion 在铜箔上快速、简单地沉积纳米 Cu2-xS 薄膜,通过光热电转换收集太阳能
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-02-29 DOI: 10.1016/j.mtener.2024.101544
Abbas Karami, Saeid Azizian
{"title":"Fast and simple deposition of thin film of Cu2-xS nanosheets on copper foil for solar energy harvesting via photo-thermo-electric conversion","authors":"Abbas Karami, Saeid Azizian","doi":"10.1016/j.mtener.2024.101544","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101544","url":null,"abstract":"Solar energy harvesting using thermoelectric generator (TEG) devices is an overlooked but practical strategy for sustainable power generation. Solar radiation can be converted to electricity by integrating TEGs with solar absorbers. Therefore, developing solar absorbers is crucial to enhance the performance of TEG devices for efficient photo-thermo-electric conversion. Here, we presented a simple and cost-effective method to prepare a stable thin film of copper sulfide nanosheets on a copper plate substrate, taking only a few seconds to complete. This method led to forming a mixture of CuS nanosheets (x=0.03, 0.05, and 1) vertically grown on the surface of the copper foil and possessed tightly packed porous clustered structures. The prepared Cu-foil@CuS nanosheets demonstrated exceptional photothermal characteristics, achieving a temperature of 65°C within 3-4 minutes when exposed to the illumination of a lamp with an intensity of 500 W/m. There was a significant increase in power output compared to bare thermoelectric modules when the Cu-foil@CuS nanosheets were used as solar absorbers in a solar-thermo-electric generator (STEG) system. The study highlights the potential of CuS nanosheets as solar absorbers in STEGs.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"61 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140055911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Mn incorporation into NiOOH electrocatalyst loaded on BiVO4 photoanode for enhanced photoelectrochemical water splitting: Experimental and theoretical approach 在 BiVO4 光阳极上负载的 NiOOH 电催化剂中加入锰以增强光电化学水分离的研究:实验和理论方法
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-02-29 DOI: 10.1016/j.mtener.2024.101541
Soundarya Mary A, Murugan C, Mahendiran D, Murugan P, Pandikumar A
{"title":"Investigation of Mn incorporation into NiOOH electrocatalyst loaded on BiVO4 photoanode for enhanced photoelectrochemical water splitting: Experimental and theoretical approach","authors":"Soundarya Mary A, Murugan C, Mahendiran D, Murugan P, Pandikumar A","doi":"10.1016/j.mtener.2024.101541","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101541","url":null,"abstract":"Loading of OER cocatalyst is an effective strategy to overcome the inherent poor charge separation of BiVO. Incorporation of Mn-doped NiOOH electrocatalyst on the electrochemically deposited BiVO photoanode surface boost the PEC water oxidation. Here, the Mn-NiOOH/BiVO (10%) photoanode exhibited ∼2.6 and ∼1.7-fold higher photocurrent density (2.41 mA cm), compared with BiVO and BiVO/NiOOH, respectively. Noticeably, it delivered the transient decay time (τ) of 1.83 s, which is ∼3.5 and ∼2.3-fold higher than the BiVO and BiVO/NiOOH, besides the BiVO/Mn-NiOOH (10%) utilizes 42.4 % of the photogenerated holes, whereas in BiVO, it is only 17.06 %, and BiVO/NiOOH exhibits 25.98 % for the water oxidation process. The enhanced PEC activity of the BiVO/Mn-NiOOH photoanode is due to reduced photoinduced charge carrier’s recombination rate, facile interfacial charge transfer, and rapid hole consumption. Moreover, the higher efficiency of Mn-NiOOH cocatalyst is understood by employing DFT studies and revealed that Mn-NiOOH (10%) has lower formation energy than higher concentrations and infers that it requires the lower overpotential (2.37 V) than NiOOH (3.06 V). Overall, under illumination, Mn-NiOOH consumes the photogenerated holes from BiVO for the cyclic catalytic process of NiOOH, thus enhances the PEC performance.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"1 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140056115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信