Materials Today Energy最新文献

筛选
英文 中文
Unconventional Perovskite-to-perovskite Tandem Cell Designed by Stacking with Large-gap Phosphonium-based Analogs 通过与大间隙膦基类似物堆叠设计出非常规的过氧化物-过氧化物串联电池
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-03-16 DOI: 10.1016/j.mtener.2024.101556
Qi Liu, Ming-Gang Ju, Xiao Cheng Zeng
{"title":"Unconventional Perovskite-to-perovskite Tandem Cell Designed by Stacking with Large-gap Phosphonium-based Analogs","authors":"Qi Liu, Ming-Gang Ju, Xiao Cheng Zeng","doi":"10.1016/j.mtener.2024.101556","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101556","url":null,"abstract":"We present a material design strategy for stacking large-gap unconventional derivatives on the prevailing hybrid organic-inorganic perovskites, (MA, FA)(Sn, Pb)I as a perovskite-to-perovskite tandem cell. To this end, we employ an unconventional structurally well-matched hybrid organic-inorganic perovskite derivative MPSnBr with large-sized weakly hybridized A-site methylphosphonium (MP) cations to construct a heterojunction with its structural analogs (MA, FA)(Sn, Pb)I to simulate the two subcells of the tandem cell. Compared with the popular ammonium-based perovskites, density-functional theory computation suggests that MPSnBr possesses a wider bandgap and lower conduction band minimum (CBM) level induced by the weak-hybrid MP cations, which can be a more suitable wide-range light absorber than its traditional ammonium counterparts. We show that such a heterostructure exhibits a desirable positive ”spike-like” BO, resulting in higher V and more effective suppression of undesirable carrier recombination. Hence, MPSnBr as a structural well-matched absorber, can potentially serve as the wide-range subcell in perovskite tandem cell devices.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
External Field Regulation of Li Deposition in Lithium Metal Batteries 金属锂电池中锂离子沉积的外场调节
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-03-16 DOI: 10.1016/j.mtener.2024.101557
Aoxuan Wang, Linxue Zhang, Jinchao Cao, Xinyi He, Xinyue Zhang, Shoubin Zhou, Zhenglin Hu, Xingjiang Liu, Jiayan Luo
{"title":"External Field Regulation of Li Deposition in Lithium Metal Batteries","authors":"Aoxuan Wang, Linxue Zhang, Jinchao Cao, Xinyi He, Xinyue Zhang, Shoubin Zhou, Zhenglin Hu, Xingjiang Liu, Jiayan Luo","doi":"10.1016/j.mtener.2024.101557","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101557","url":null,"abstract":"Lithium (Li) metal is considered as the “Holy Grail” among various anodes due to its high theoretical specific capacity and low electrochemical potential. However, the Li anode undergoes uncontrollable dendrite growth and infinite volume expansion during cycling, seriously impeding the commercialization of high-energy-density Li metal batteries (LMBs). Considering the Li deposition is a dynamic electrochemical process, the external filed regulation has become a hotspot strategy to promote the cycling performance and safety application of Li mental anodes (LMA). Herein, we focus on the external fields involved during Li deposition, systematically summarizing the current progress of external field regulation for LMA. The mechanisms and limitations in regulating Li deposition are amply discussed. New perspectives and future research directions are also provided. With various external field being investigated and applied in Li metal anode system, it is expected that the dynamic regulation strategy can deliver great opportunities and promote the practical application of next-generation high-energy-density LMBs and other metal batteries.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Al–doped Bi2Se3 Nanoparticulate Semiconductors with Controlled Resonance States for Enhanced Thermoelectric Efficiency 具有可控共振态的铝掺杂 Bi2Se3 纳米微粒半导体,可提高热电效率
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-03-15 DOI: 10.1016/j.mtener.2024.101555
Jamal-Deen Musah, Siu Wing Or, Lingyan Kong, Chi-Man Lawrence Wu
{"title":"Al–doped Bi2Se3 Nanoparticulate Semiconductors with Controlled Resonance States for Enhanced Thermoelectric Efficiency","authors":"Jamal-Deen Musah, Siu Wing Or, Lingyan Kong, Chi-Man Lawrence Wu","doi":"10.1016/j.mtener.2024.101555","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101555","url":null,"abstract":"The generally lower thermoelectric figure of merit (zT < 0.1) of eco-friendly BiSe semiconductors constrains the waste energy conversion efficiency in the resulting devices compared to relatively toxic BiTe. We strategically introduce an aluminium (Al) dopant to create resonance states near the Fermi level and obtain Al–BiSe nanoparticulate semiconductors with enhanced zT. As an electron feeder, these resonance states significantly improve transport properties within the Al–BiSe semiconductors. The theoretical calculation shows the creation of the resonance states by hybridizing the dopant’s -orbitals with the host’s -orbitals near the Fermi level. The Al–BiSe semiconductors effectively moderate electron concentration and Seebeck-dependent effective mass, resulting in an ultrahigh zT of 0.57 over a broad temperature range of 300–473 K. The nanoparticle size (∼20 nm) efficiently impedes the propagation of lattice vibration, leading to an ultralow total thermal conductivity of 0.399 WmK. In contrast to conventional doping approaches, our strategic resonance doping is pivotal to enhancing the thermoelectric performance of the BiSe semiconductors and providing a pathway for synthesizing other semiconductor materials.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bathocuproine, an Old Dog New Tricks for Boosting the Performance of Perovskite Solar Cells 老狗出新招:Bathocuproine 提高过氧化物太阳能电池的性能
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-03-12 DOI: 10.1016/j.mtener.2024.101554
Yaqi Hong, Song Zhang, Hu Shen, Xingyuan Tian, Bin Zhang, Xin Zhou, Rong Liu, Ying Liu, Yicong Gao, Ruirui Cao, Huilin Li, Fumin Li, Zhitao Shen, Chong Chen
{"title":"Bathocuproine, an Old Dog New Tricks for Boosting the Performance of Perovskite Solar Cells","authors":"Yaqi Hong, Song Zhang, Hu Shen, Xingyuan Tian, Bin Zhang, Xin Zhou, Rong Liu, Ying Liu, Yicong Gao, Ruirui Cao, Huilin Li, Fumin Li, Zhitao Shen, Chong Chen","doi":"10.1016/j.mtener.2024.101554","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101554","url":null,"abstract":"Perovskite solar cells (PSCs) have demonstrated extensive prospects for future applications. However, defects remain as the crucial factor that impedes their further advancement in performance, and passivation of the interfaces (such as the buried and/or top interfaces) is regarded as one of the most effective approaches. Herein, we aim to address another important interface, namely, the indium tin oxide/electron transport layer (ITO/ETL) interface in n-i-p structured devices. Since electron transport layers are typically fabricated using commercial nano tin dioxide, which often display insufficient density. To combat this, we employ the most commonly used bathocuproine (BCP) material to treat the ITO/ETL interface. The incorporation of BCP diminishes the direct contact between the perovskite and ITO layers, while also passivating buried interface and adjusting the crystal orientation of perovskites. Furthermore, the substrate layer exhibits improved transparency, consequently elevating the utilization rate of light by perovskite. As a result, the BCP-based PSC exhibits an impressive efficiency greater than 22%, surpassing the control one of 19.91%, and which simultaneously demonstrates excellent stability. Notably, the optimization of this interface has universal applicability in the improvement of PSCs performance.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing energy storage performance of polyethylene via passivation with oxygen atoms through C-H vacancy carbonylation 通过 C-H 空位羰基化用氧原子钝化提高聚乙烯的储能性能
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-03-11 DOI: 10.1016/j.mtener.2024.101553
Jiangheng Jia, Zhizhan Dai, Song Ding, Yiwei Wang, Shengchun Shen, Ying Hou, Yuewei Yin, Xiaoguang Li
{"title":"Enhancing energy storage performance of polyethylene via passivation with oxygen atoms through C-H vacancy carbonylation","authors":"Jiangheng Jia, Zhizhan Dai, Song Ding, Yiwei Wang, Shengchun Shen, Ying Hou, Yuewei Yin, Xiaoguang Li","doi":"10.1016/j.mtener.2024.101553","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101553","url":null,"abstract":"Low energy density of polymer film capacitors is regarded as one of the most serious drawbacks facing growing demands for equipment integration and miniaturization. Herein, ultraviolet light and ozone (UVO) surface modification is utilized to simultaneously improve dielectric constant and breakdown strength of polyethylene (PE) films. As a result, after 3 minutes of UVO treatment, an enhanced recoverable energy density of 4.79 J/cm with a charge-discharge efficiency of >95% is obtained under 650 MV/m at room temperature (RT). Significantly, stable energy storage performance under 200 MV/m maintains throughout a broad temperature range from -90°C to 90°C and during 20000 cycles of charge-discharge procedures. According to first-principles calculations and thermally stimulated depolarization current measurements, formation of carbonyl groups (C=O) after UVO treatment could effectively passivate initial deep-level defect states caused by H vacancies, which explains the improvement in capacitive energy storage. Moreover, the metalized UVO-modified PE exhibits valuable breakdown self-clearing ability, and the self-cleared specimen maintains stable energy storage performance over 20000 cycles at 200 MV/m and RT. This work offers an effective and user-friendly method for enhancing comprehensive dielectric characteristics of PE-based materials, potential for applications in modern power systems and electronic devices.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140128109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Na4Fe1.5Mn1.5(PO4)2(P2O7): A Low-Cost and Earth-Abundant Cathode for Robust Sodium Storage Na4Fe1.5Mn1.5(PO4)2(P2O7):一种低成本、富含地球资源的稳健钠储存阴极
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-03-08 DOI: 10.1016/j.mtener.2024.101552
Hao Fan, Congcong Cai, Xiaobin Liao, Ping Hu, Xinyuan Li, Jiantao Li, Sungsik Lee, Changliang Chen, Ting Zhu, Zhuo Chen, Mengyao Wang, Liqiang Mai, Liang Zhou
{"title":"Na4Fe1.5Mn1.5(PO4)2(P2O7): A Low-Cost and Earth-Abundant Cathode for Robust Sodium Storage","authors":"Hao Fan, Congcong Cai, Xiaobin Liao, Ping Hu, Xinyuan Li, Jiantao Li, Sungsik Lee, Changliang Chen, Ting Zhu, Zhuo Chen, Mengyao Wang, Liqiang Mai, Liang Zhou","doi":"10.1016/j.mtener.2024.101552","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101552","url":null,"abstract":"The mixed compounds of phosphates and pyrophosphates are attractive cathodes for sodium-ion batteries (SIBs) owing to their robust open framework structure and superior diffusion dynamics. However, most reported mixed phosphate cathodes generally suffer from low operating potential. Herein, we develop a bimetallic NaFeMn(PO)(PO)/C-rGO (NFMPP/C-rGO) cathode, which possesses two working plateaus at 2.92 and 3.95 V. The obtained NFMPP/C-rGO demonstrates a stable high capacity of over 120 mAh g at 0.1 C. XRD characterization discloses a solid solution reaction for the Fe redox couple and a two-phase reaction for the Mn redox couple. First-principles calculations reveal the migration of Na in NFMPP has low barriers. This work provides a new, low-cost, earth-abundant, and stable cathode choice for practical SIBs.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green-Solvent Processable Polymeric Hole Transport Materials with Functional Groups for Inverted Perovskite Solar Cell 用于反相包晶石太阳能电池的含功能基团的绿色溶剂可加工聚合物空穴传输材料
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-03-08 DOI: 10.1016/j.mtener.2024.101549
Mei Zhao, Quanping Wu, Pengcheng Liu, Ming Luo, Jia He, Song Xue, Yonglian Xiong, Xueping Zong
{"title":"Green-Solvent Processable Polymeric Hole Transport Materials with Functional Groups for Inverted Perovskite Solar Cell","authors":"Mei Zhao, Quanping Wu, Pengcheng Liu, Ming Luo, Jia He, Song Xue, Yonglian Xiong, Xueping Zong","doi":"10.1016/j.mtener.2024.101549","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101549","url":null,"abstract":"Exploring novel hole transporting materials (HTMs) with high hole mobility and eco-friendly processability are imperative for the commercialization of perovskite solar cells (PSCs). However, there is a “trade-off” that the introduction of large-conjugated units aiming to ensure high hole mobility, inevitably compromises the green-solvent solubility of HTMs. In this work, a hybrid strategy of rigidity and flexibility is proposed, in which the conjugated unit is assembled by the rigid binaphthylamine core, and the amide-bond constitutes the flexible backbone. Polar solubilizing units ethylenedioxythiophene and thiophene are used as bridges to construct two kinds of polymers, cited as EDOT-SMe and T-SMe, respectively. Both polymers achieve high hole mobility, well-matched energy levels and efficient defect passivation effect toward the perovskite films. When processing the HTM films with the green solvent (2-methylanisole), the corresponding PSCs deliver fill factors as high as 82.7% for EDOT-SMe and 81.9% for T-SMe, respectively. Consequently, s of 20.25% for EDOT-SMe and 20.09% for T-SMe are realized, outperforming that of commercial polymer poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA, 19.71%). Moreover, PSCs with these polyamides achieve good long-term stability. This work paves a new path for exploring efficient and green-solvent processable polymeric HTMs.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving high carrier mobility and thermoelectric performance in nearly twin-free rhombohedral GeTe (00l) films 在近乎无孪晶的斜面 GeTe (00l) 薄膜中实现高载流子迁移率和热电性能
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-03-08 DOI: 10.1016/j.mtener.2024.101550
Tuo Chen, Qian Xiang, Haoran Ge, Ziwei Li, Fan Yan, Jiahong Cheng, Min Hong, Yubo Luo, Junyou Yang, Yong Liu, Wei Liu, Xinfeng Tang
{"title":"Achieving high carrier mobility and thermoelectric performance in nearly twin-free rhombohedral GeTe (00l) films","authors":"Tuo Chen, Qian Xiang, Haoran Ge, Ziwei Li, Fan Yan, Jiahong Cheng, Min Hong, Yubo Luo, Junyou Yang, Yong Liu, Wei Liu, Xinfeng Tang","doi":"10.1016/j.mtener.2024.101550","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101550","url":null,"abstract":"GeTe-based thermoelectric (TE) films have garnered significant attentions due to their promising TE performance near room temperature. However, it is challenging to further optimizing the TE performance due to the inferior carrier mobility () and the excessively high hole density (). Herein, we developed a novel method based on molecular beam epitaxy (MBE) technique to successfully fabricate nearly twin-free GeTe (00) films incorporating BiTe buffer layers to alleviate epitaxial strain. Consequently, was significantly enhanced. Additionally, through comprehensively investigating the processing conditions, we found that substrate temperature and Te/GeTe flux ratio can shape intrinsic atomic defects and further decrease . With the optimal synthesis and processing conditions, the GeTe film achieves optimized of 3.44×10 cm and a high of 73.31 cmVs, which lead to the highest room-temperature power factor of 2.67 mWmK, outperforming the values of other GeTe films. This work provides important guidance on fabricating twin-free GeTe films and on further improving their TE performance.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress on the preparation and application in photocatalysis of 2D MXene-based materials 二维二氧杂环烯基材料的制备和光催化应用的最新进展
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-03-07 DOI: 10.1016/j.mtener.2024.101547
Weichun Bai, Luyi Shi, Zhihang Li, Dan Liu, Yongmei Liang, Baochen Han, Jian Qi, Yaqiang Li
{"title":"Recent progress on the preparation and application in photocatalysis of 2D MXene-based materials","authors":"Weichun Bai, Luyi Shi, Zhihang Li, Dan Liu, Yongmei Liang, Baochen Han, Jian Qi, Yaqiang Li","doi":"10.1016/j.mtener.2024.101547","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101547","url":null,"abstract":"Since the discovery of MXene in 2011, its physical and chemical diversity has led to MXene being considered as a potential 2D material with a wide range of applications due to its tunable structure and rich surface chemistry. This review focuses on summarizing the preparation methods of MXene, MXene-based and MXene-derived two-dimensional photocatalysts and their application research progress in the field of photocatalysis. The preparation methods of MXene are described in detail from three aspects: wet etching method, anhydrous etching method and direct synthesis method. Meanwhile, the strategies for the insertion and layering of multilayer MXene and the synthesis process of MXene-based and MXene-derived photocatalysts are described. In addition, we present recent research on MXene-based and MXene-derived photocatalysts for environmental and energy applications, including water decomposition to release H, CO reduction, nitrogen fixation, and other photocatalytic applications. Finally, challenges and perspectives for MXene research are presented.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphologically Engineered Multi-component Organic Solar Cells with Stratified Donor Distribution and Alloyed Acceptors for Enhanced Efficiency and Stability 具有分层供体分布和合金受体的形态工程多组分有机太阳能电池,可提高效率和稳定性
IF 9.3 2区 材料科学
Materials Today Energy Pub Date : 2024-03-07 DOI: 10.1016/j.mtener.2024.101548
Nan Zhang, Kui Jiang, Francis R. Lin, Yidan An, Gengxin Du, Tian Xia, Alex K.-Y. Jen, Hin-Lap Yip
{"title":"Morphologically Engineered Multi-component Organic Solar Cells with Stratified Donor Distribution and Alloyed Acceptors for Enhanced Efficiency and Stability","authors":"Nan Zhang, Kui Jiang, Francis R. Lin, Yidan An, Gengxin Du, Tian Xia, Alex K.-Y. Jen, Hin-Lap Yip","doi":"10.1016/j.mtener.2024.101548","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101548","url":null,"abstract":"The strategy of integrating multiple components within the bulk-heterojunction layer of organic photovoltaics (OPVs) has proven effective in enhancing the device performance and demonstrates broad potential applications. Nonetheless, achieving precise control over the morphology in such a multifaceted system presents a significant challenge. In this work, we introduce an innovative sequential casting technique to fabricate highly efficient quaternary OPVs, with a meticulously tailored morphology featuring layers of stratified donor distribution and composite alloyed acceptors. The layered configuration of D18/PTQ10, with distinct crystalline domains, establishes a dedicated hole-transport pathway, while the alloyed BTP-eC9:Y6-O acceptors are evenly dispersed across the layered D18/PTQ10 donor phase. This carefully crafted morphology presents a gradient and interpenetrated donor/acceptor phase separation at an ideal length scale, which facilitates exciton dissociation, minimizes energetic disorder, and mitigates recombination. As a result, a power conversion efficiency close to 19% with excellent operational stability (extrapolated =818 h) was achieved. This work offers valuable insights into the morphological engineering of multi-component OPVs for improved performance.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140128064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信