{"title":"合作钴单原子和 Co2P 纳米粒子作为催化剂串联促进锂-S 电池的氧化还原动力学","authors":"Haorui Zhao, Qin Yang, Daming Zhu, Wenqiang Yang, Zixiong Shi, Xia Li, Yifan Ding, Wenyi Guo, Jiaxi Gu, Yingze Song, Jingyu Sun","doi":"10.1016/j.mtener.2024.101504","DOIUrl":null,"url":null,"abstract":"<p>Notorious shuttle effect and sluggish redox kinetics as major bottlenecks have nowadays hindered the commercial implementation of lithium–sulfur batteries. The activity design of catalysts has attracted increasing attention in this realm thus far. Herein, we devise a Co-based electrocatalytic tandem (Co–N–P) encompassing (N,P)-coordinated Co single atoms and Co<sub>2</sub>P nanoparticles for guiding the dual-directional sulfur evolution reactions. Such a Co–N–P tandem synergizes high atom utilization, large catalyst loading and smooth charge migration, thereby resulting in the high activity for dictating the Li<sub>2</sub>S nucleation and decomposition. As a result, the full cell incorporating the Co–N–P modified separator harvests 0.1% capacity decay after 500 cycles at 1.0 C. In addition, a favorable areal capacity output of 4.2 mAh cm<sup>–2</sup> is obtained under a sulfur loading of 5.3 mg cm<sup>–2</sup>. We anticipate that this work would offer insight into the hybrid catalyst design affording high activity and stability for emerging energy applications.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"85 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooperative Co Single Atoms and Co2P Nanoparticles as Catalytic Tandem for Boosting Redox Kinetics in Li–S Batteries\",\"authors\":\"Haorui Zhao, Qin Yang, Daming Zhu, Wenqiang Yang, Zixiong Shi, Xia Li, Yifan Ding, Wenyi Guo, Jiaxi Gu, Yingze Song, Jingyu Sun\",\"doi\":\"10.1016/j.mtener.2024.101504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Notorious shuttle effect and sluggish redox kinetics as major bottlenecks have nowadays hindered the commercial implementation of lithium–sulfur batteries. The activity design of catalysts has attracted increasing attention in this realm thus far. Herein, we devise a Co-based electrocatalytic tandem (Co–N–P) encompassing (N,P)-coordinated Co single atoms and Co<sub>2</sub>P nanoparticles for guiding the dual-directional sulfur evolution reactions. Such a Co–N–P tandem synergizes high atom utilization, large catalyst loading and smooth charge migration, thereby resulting in the high activity for dictating the Li<sub>2</sub>S nucleation and decomposition. As a result, the full cell incorporating the Co–N–P modified separator harvests 0.1% capacity decay after 500 cycles at 1.0 C. In addition, a favorable areal capacity output of 4.2 mAh cm<sup>–2</sup> is obtained under a sulfur loading of 5.3 mg cm<sup>–2</sup>. We anticipate that this work would offer insight into the hybrid catalyst design affording high activity and stability for emerging energy applications.</p>\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101504\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101504","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
众所周知的穿梭效应和缓慢的氧化还原动力学是目前锂硫电池商业化的主要瓶颈。迄今为止,催化剂的活性设计在这一领域引起了越来越多的关注。在此,我们设计了一种 Co 基电催化串联(Co-N-P),其中包括(N,P)配位 Co 单原子和 Co2P 纳米颗粒,用于引导双向硫进化反应。这种 Co-N-P 串联协同提高了原子利用率、催化剂负载量和电荷迁移的平稳性,从而产生了支配 Li2S 成核和分解的高活性。此外,在 5.3 毫克/厘米-2 的硫负载条件下,还能获得 4.2 毫安时/厘米-2 的良好面积容量输出。我们希望这项研究能为新兴能源应用领域提供高活性和高稳定性的混合催化剂设计。
Cooperative Co Single Atoms and Co2P Nanoparticles as Catalytic Tandem for Boosting Redox Kinetics in Li–S Batteries
Notorious shuttle effect and sluggish redox kinetics as major bottlenecks have nowadays hindered the commercial implementation of lithium–sulfur batteries. The activity design of catalysts has attracted increasing attention in this realm thus far. Herein, we devise a Co-based electrocatalytic tandem (Co–N–P) encompassing (N,P)-coordinated Co single atoms and Co2P nanoparticles for guiding the dual-directional sulfur evolution reactions. Such a Co–N–P tandem synergizes high atom utilization, large catalyst loading and smooth charge migration, thereby resulting in the high activity for dictating the Li2S nucleation and decomposition. As a result, the full cell incorporating the Co–N–P modified separator harvests 0.1% capacity decay after 500 cycles at 1.0 C. In addition, a favorable areal capacity output of 4.2 mAh cm–2 is obtained under a sulfur loading of 5.3 mg cm–2. We anticipate that this work would offer insight into the hybrid catalyst design affording high activity and stability for emerging energy applications.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials