定制硬碳中的缺陷和孔隙以储存钠的最新进展

IF 9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Chenyang Huang, Junyi Yin, Weichen Shi, Yonghong Cheng, Xin Xu
{"title":"定制硬碳中的缺陷和孔隙以储存钠的最新进展","authors":"Chenyang Huang, Junyi Yin, Weichen Shi, Yonghong Cheng, Xin Xu","doi":"10.1016/j.mtener.2024.101501","DOIUrl":null,"url":null,"abstract":"<p>Sodium-ion batteries (SIBs) are promising alternatives for Lithium-ion batteries in the field of large-scale energy storage for abundant sodium resources. Hard Carbons (HCs) are the most commonly used anode materials of SIBs for balanced electrochemical performance. The major challenges lie in low initial coulombic efficiency (ICE), insufficient reversible capacity, and the costs. Defects, pores, and graphitization degree are the main characteristics of HCs. The synergistic effects of defects and pores decide the surface adsorption distribution of electrolytes and the real electrochemical active area, which determine the solid-electrolyte interface formation process and ICE values. Sodium cluster stored in closed pores contributes to low-voltage plateau capacity with high reversibility. Suitable defect distribution on the inner wall of the closed pores ensures stable cluster formation. This review focuses on the defects and pores of HC and corresponding modification strategies, which are highlighted by their synergistic effects. We expect to offer valuable guidance for constructing next-generation HC anodes.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"24 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances of tailoring defects and pores in hard carbon for sodium storage\",\"authors\":\"Chenyang Huang, Junyi Yin, Weichen Shi, Yonghong Cheng, Xin Xu\",\"doi\":\"10.1016/j.mtener.2024.101501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sodium-ion batteries (SIBs) are promising alternatives for Lithium-ion batteries in the field of large-scale energy storage for abundant sodium resources. Hard Carbons (HCs) are the most commonly used anode materials of SIBs for balanced electrochemical performance. The major challenges lie in low initial coulombic efficiency (ICE), insufficient reversible capacity, and the costs. Defects, pores, and graphitization degree are the main characteristics of HCs. The synergistic effects of defects and pores decide the surface adsorption distribution of electrolytes and the real electrochemical active area, which determine the solid-electrolyte interface formation process and ICE values. Sodium cluster stored in closed pores contributes to low-voltage plateau capacity with high reversibility. Suitable defect distribution on the inner wall of the closed pores ensures stable cluster formation. This review focuses on the defects and pores of HC and corresponding modification strategies, which are highlighted by their synergistic effects. We expect to offer valuable guidance for constructing next-generation HC anodes.</p>\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101501\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101501","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钠离子电池(SIB)是锂离子电池的替代品,在大规模储能领域具有广阔的前景,因为钠资源丰富。硬碳(HC)是钠离子电池最常用的阳极材料,具有均衡的电化学性能。其主要挑战在于初始库仑效率(ICE)低、可逆容量不足以及成本高。缺陷、孔隙和石墨化程度是碳氢化合物的主要特征。缺陷和孔隙的协同作用决定了电解质的表面吸附分布和实际电化学活性面积,从而决定了固体-电解质界面的形成过程和 ICE 值。储存在封闭孔隙中的钠簇有助于形成具有高可逆性的低电压高原容量。封闭孔隙内壁上适当的缺陷分布可确保簇的稳定形成。本综述重点介绍了碳氢化合物的缺陷和孔隙以及相应的改性策略,这些策略的协同效应突出了碳氢化合物的缺陷和孔隙。我们希望能为构建下一代碳氢化合物阳极提供有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recent advances of tailoring defects and pores in hard carbon for sodium storage

Recent advances of tailoring defects and pores in hard carbon for sodium storage

Sodium-ion batteries (SIBs) are promising alternatives for Lithium-ion batteries in the field of large-scale energy storage for abundant sodium resources. Hard Carbons (HCs) are the most commonly used anode materials of SIBs for balanced electrochemical performance. The major challenges lie in low initial coulombic efficiency (ICE), insufficient reversible capacity, and the costs. Defects, pores, and graphitization degree are the main characteristics of HCs. The synergistic effects of defects and pores decide the surface adsorption distribution of electrolytes and the real electrochemical active area, which determine the solid-electrolyte interface formation process and ICE values. Sodium cluster stored in closed pores contributes to low-voltage plateau capacity with high reversibility. Suitable defect distribution on the inner wall of the closed pores ensures stable cluster formation. This review focuses on the defects and pores of HC and corresponding modification strategies, which are highlighted by their synergistic effects. We expect to offer valuable guidance for constructing next-generation HC anodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Energy
Materials Today Energy Materials Science-Materials Science (miscellaneous)
CiteScore
15.10
自引率
7.50%
发文量
291
审稿时长
15 days
期刊介绍: Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy. Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials. Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to: -Solar energy conversion -Hydrogen generation -Photocatalysis -Thermoelectric materials and devices -Materials for nuclear energy applications -Materials for Energy Storage -Environment protection -Sustainable and green materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信