基于无粘合剂结构 Ti3C2Tx MXene 薄膜的人体友好型柔性固态可生物降解超级电容器

IF 9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xiaofeng Zhang, Muhammad Sufyan Javed, Hongjia Ren, Xinze Zhang, Salamat Ali, Kaiming Han, Awais Ahmad, Ammar M. Tighezza, Weihua Han, Kui-Qing Peng
{"title":"基于无粘合剂结构 Ti3C2Tx MXene 薄膜的人体友好型柔性固态可生物降解超级电容器","authors":"Xiaofeng Zhang, Muhammad Sufyan Javed, Hongjia Ren, Xinze Zhang, Salamat Ali, Kaiming Han, Awais Ahmad, Ammar M. Tighezza, Weihua Han, Kui-Qing Peng","doi":"10.1016/j.mtener.2024.101496","DOIUrl":null,"url":null,"abstract":"<p>With the rapid development of biomedical technology, biodegradable and implantable energy storage devices for biosensor and bioelectronics applications have attracted the great attention of scientists. However, the limited energy density, poor biocompatibility and excessive space occupation of existing biodegradable energy storage devices pose major challenges to their application in the biomedical field. To address these challenges, in this work, flexible Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> film with an adhesive-free structure constructed is proposed as electrode material for the flexible solid-state biodegradable supercapacitor (FSBSC). The morphology and structure of MXene films were characterized by XRD, XPS, Raman, SEM and TEM. A 0.9% NaCl saline, similar human body fluids was used as the electrolyte solution to construct symmetrical FSBSC (Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub>//NaCl-PVA//Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub>-FSBSC). The Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub>//NaCl-PVA//Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub>-FSBSC exhibits a high capacitance of 112 F/g at 1 A/g, excellent rate capability (73.2% at 20 A/g), long lifetime (81.6 % after 10,000 cycles), and high specific energy/power (62.3 Wh/kg at 1,000.8 W/kg). The charge storage mechanism was analyzed using ex-situ XRD, XPS and density function theory (DFT). DFT results show that the Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> (T<sub><em>x</em></sub> = O)) electrode possesses metallic properties. The calculated adsorption energies (<em>E</em><sub>ads</sub>) and smaller diffusion barriers of Na<sup>+</sup>-ions further proved the outstanding performance of the Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> electrode. Moreover, the apparatus is entirely biodegradable, thereby paving a promising path for the progression of bioelectronics and biomedical energy storage technologies.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"16 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-friendly flexible solid-state biodegradable supercapacitor based on Ti3C2Tx MXene film without adhesive structure\",\"authors\":\"Xiaofeng Zhang, Muhammad Sufyan Javed, Hongjia Ren, Xinze Zhang, Salamat Ali, Kaiming Han, Awais Ahmad, Ammar M. Tighezza, Weihua Han, Kui-Qing Peng\",\"doi\":\"10.1016/j.mtener.2024.101496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the rapid development of biomedical technology, biodegradable and implantable energy storage devices for biosensor and bioelectronics applications have attracted the great attention of scientists. However, the limited energy density, poor biocompatibility and excessive space occupation of existing biodegradable energy storage devices pose major challenges to their application in the biomedical field. To address these challenges, in this work, flexible Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> film with an adhesive-free structure constructed is proposed as electrode material for the flexible solid-state biodegradable supercapacitor (FSBSC). The morphology and structure of MXene films were characterized by XRD, XPS, Raman, SEM and TEM. A 0.9% NaCl saline, similar human body fluids was used as the electrolyte solution to construct symmetrical FSBSC (Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub>//NaCl-PVA//Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub>-FSBSC). The Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub>//NaCl-PVA//Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub>-FSBSC exhibits a high capacitance of 112 F/g at 1 A/g, excellent rate capability (73.2% at 20 A/g), long lifetime (81.6 % after 10,000 cycles), and high specific energy/power (62.3 Wh/kg at 1,000.8 W/kg). The charge storage mechanism was analyzed using ex-situ XRD, XPS and density function theory (DFT). DFT results show that the Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> (T<sub><em>x</em></sub> = O)) electrode possesses metallic properties. The calculated adsorption energies (<em>E</em><sub>ads</sub>) and smaller diffusion barriers of Na<sup>+</sup>-ions further proved the outstanding performance of the Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> electrode. Moreover, the apparatus is entirely biodegradable, thereby paving a promising path for the progression of bioelectronics and biomedical energy storage technologies.</p>\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101496\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101496","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着生物医学技术的飞速发展,用于生物传感器和生物电子学的可生物降解和植入式储能器件引起了科学家们的极大关注。然而,现有生物可降解储能器件的能量密度有限、生物相容性差、占用空间过大等问题给其在生物医学领域的应用带来了巨大挑战。为了应对这些挑战,本研究提出了无粘合剂结构的柔性 Ti3C2Tx 薄膜作为柔性固态生物可降解超级电容器(FSBSC)的电极材料。通过 XRD、XPS、拉曼、扫描电镜和 TEM 对 MXene 薄膜的形貌和结构进行了表征。以类似人体体液的 0.9% 氯化钠生理盐水作为电解质溶液,构建了对称的 FSBSC(Ti3C2Tx//NaCl-PVA//Ti3C2Tx-FSBSC)。Ti3C2Tx//NaCl-PVA//Ti3C2Tx-FSBSC 在 1 A/g 时具有 112 F/g 的高电容、出色的速率能力(20 A/g 时为 73.2%)、长寿命(10,000 次循环后为 81.6%)和高比能量/功率(1,000.8 W/kg 时为 62.3 Wh/kg)。利用原位 XRD、XPS 和密度函数理论(DFT)分析了电荷存储机制。DFT 结果表明,Ti3C2Tx(Tx = O)电极具有金属特性。计算得出的吸附能(Eads)和较小的 Na+ 离子扩散障碍进一步证明了 Ti3C2Tx 电极的卓越性能。此外,该装置完全可生物降解,从而为生物电子学和生物医学储能技术的发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Human-friendly flexible solid-state biodegradable supercapacitor based on Ti3C2Tx MXene film without adhesive structure

Human-friendly flexible solid-state biodegradable supercapacitor based on Ti3C2Tx MXene film without adhesive structure

With the rapid development of biomedical technology, biodegradable and implantable energy storage devices for biosensor and bioelectronics applications have attracted the great attention of scientists. However, the limited energy density, poor biocompatibility and excessive space occupation of existing biodegradable energy storage devices pose major challenges to their application in the biomedical field. To address these challenges, in this work, flexible Ti3C2Tx film with an adhesive-free structure constructed is proposed as electrode material for the flexible solid-state biodegradable supercapacitor (FSBSC). The morphology and structure of MXene films were characterized by XRD, XPS, Raman, SEM and TEM. A 0.9% NaCl saline, similar human body fluids was used as the electrolyte solution to construct symmetrical FSBSC (Ti3C2Tx//NaCl-PVA//Ti3C2Tx-FSBSC). The Ti3C2Tx//NaCl-PVA//Ti3C2Tx-FSBSC exhibits a high capacitance of 112 F/g at 1 A/g, excellent rate capability (73.2% at 20 A/g), long lifetime (81.6 % after 10,000 cycles), and high specific energy/power (62.3 Wh/kg at 1,000.8 W/kg). The charge storage mechanism was analyzed using ex-situ XRD, XPS and density function theory (DFT). DFT results show that the Ti3C2Tx (Tx = O)) electrode possesses metallic properties. The calculated adsorption energies (Eads) and smaller diffusion barriers of Na+-ions further proved the outstanding performance of the Ti3C2Tx electrode. Moreover, the apparatus is entirely biodegradable, thereby paving a promising path for the progression of bioelectronics and biomedical energy storage technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Energy
Materials Today Energy Materials Science-Materials Science (miscellaneous)
CiteScore
15.10
自引率
7.50%
发文量
291
审稿时长
15 days
期刊介绍: Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy. Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials. Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to: -Solar energy conversion -Hydrogen generation -Photocatalysis -Thermoelectric materials and devices -Materials for nuclear energy applications -Materials for Energy Storage -Environment protection -Sustainable and green materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信