{"title":"Na4Fe1.5Mn1.5(PO4)2(P2O7):一种低成本、富含地球资源的稳健钠储存阴极","authors":"Hao Fan, Congcong Cai, Xiaobin Liao, Ping Hu, Xinyuan Li, Jiantao Li, Sungsik Lee, Changliang Chen, Ting Zhu, Zhuo Chen, Mengyao Wang, Liqiang Mai, Liang Zhou","doi":"10.1016/j.mtener.2024.101552","DOIUrl":null,"url":null,"abstract":"The mixed compounds of phosphates and pyrophosphates are attractive cathodes for sodium-ion batteries (SIBs) owing to their robust open framework structure and superior diffusion dynamics. However, most reported mixed phosphate cathodes generally suffer from low operating potential. Herein, we develop a bimetallic NaFeMn(PO)(PO)/C-rGO (NFMPP/C-rGO) cathode, which possesses two working plateaus at 2.92 and 3.95 V. The obtained NFMPP/C-rGO demonstrates a stable high capacity of over 120 mAh g at 0.1 C. XRD characterization discloses a solid solution reaction for the Fe redox couple and a two-phase reaction for the Mn redox couple. First-principles calculations reveal the migration of Na in NFMPP has low barriers. This work provides a new, low-cost, earth-abundant, and stable cathode choice for practical SIBs.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Na4Fe1.5Mn1.5(PO4)2(P2O7): A Low-Cost and Earth-Abundant Cathode for Robust Sodium Storage\",\"authors\":\"Hao Fan, Congcong Cai, Xiaobin Liao, Ping Hu, Xinyuan Li, Jiantao Li, Sungsik Lee, Changliang Chen, Ting Zhu, Zhuo Chen, Mengyao Wang, Liqiang Mai, Liang Zhou\",\"doi\":\"10.1016/j.mtener.2024.101552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mixed compounds of phosphates and pyrophosphates are attractive cathodes for sodium-ion batteries (SIBs) owing to their robust open framework structure and superior diffusion dynamics. However, most reported mixed phosphate cathodes generally suffer from low operating potential. Herein, we develop a bimetallic NaFeMn(PO)(PO)/C-rGO (NFMPP/C-rGO) cathode, which possesses two working plateaus at 2.92 and 3.95 V. The obtained NFMPP/C-rGO demonstrates a stable high capacity of over 120 mAh g at 0.1 C. XRD characterization discloses a solid solution reaction for the Fe redox couple and a two-phase reaction for the Mn redox couple. First-principles calculations reveal the migration of Na in NFMPP has low barriers. This work provides a new, low-cost, earth-abundant, and stable cathode choice for practical SIBs.\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101552\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101552","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
磷酸盐和焦磷酸盐的混合化合物因其坚固的开放式框架结构和卓越的扩散动力学而成为钠离子电池(SIB)中极具吸引力的阴极。然而,大多数已报道的混合磷酸盐阴极普遍存在工作电位低的问题。在此,我们开发了一种双金属 NaFeMn(PO)(PO)/C-rGO(NFMPP/C-rGO)阴极,它在 2.92 V 和 3.95 V 下具有两个工作平台。第一原理计算显示,Na 在 NFMPP 中的迁移具有较低的障碍。这项工作为实用的 SIB 提供了一种新的、低成本、富含地球元素且稳定的阴极选择。
Na4Fe1.5Mn1.5(PO4)2(P2O7): A Low-Cost and Earth-Abundant Cathode for Robust Sodium Storage
The mixed compounds of phosphates and pyrophosphates are attractive cathodes for sodium-ion batteries (SIBs) owing to their robust open framework structure and superior diffusion dynamics. However, most reported mixed phosphate cathodes generally suffer from low operating potential. Herein, we develop a bimetallic NaFeMn(PO)(PO)/C-rGO (NFMPP/C-rGO) cathode, which possesses two working plateaus at 2.92 and 3.95 V. The obtained NFMPP/C-rGO demonstrates a stable high capacity of over 120 mAh g at 0.1 C. XRD characterization discloses a solid solution reaction for the Fe redox couple and a two-phase reaction for the Mn redox couple. First-principles calculations reveal the migration of Na in NFMPP has low barriers. This work provides a new, low-cost, earth-abundant, and stable cathode choice for practical SIBs.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials