MagnetochemistryPub Date : 2023-07-09DOI: 10.3390/magnetochemistry9070178
Chengfang Shi, Laiwei Gao, M. Baumgarten, Dongdong Wei, Zhipeng Xu, Wenping Wang, Di Wang
{"title":"Homoconjugation Mediated Spin-Spin Coupling in Triptycene Nitronyl Nitroxide Diradicals","authors":"Chengfang Shi, Laiwei Gao, M. Baumgarten, Dongdong Wei, Zhipeng Xu, Wenping Wang, Di Wang","doi":"10.3390/magnetochemistry9070178","DOIUrl":"https://doi.org/10.3390/magnetochemistry9070178","url":null,"abstract":"In contrast to diradical linked by π-conjugation, there have been only a limited number of studies reported for those linked by homoconjugation systems. Bis(nitronyl nitroxide) diradicals and monoradical connected by a core non-rigid triptycene unit were synthesized. EPR spectroscopy and SQUID were employed to investigate the magnetic exchange interactions. The results demonstrate that the values of ΔEST are 0.19 kcal/mol (J = 34.4 cm−1) for 2,6-TP-NN and −0.21 kcal/mol (J = −36.9 cm−1) for 2,7-TP-NN, indicating ferromagnetic interaction and antiferromagnetic interaction, respectively. The spin polarization rule is not a precise predictor of the behavior of triptycene diradicals, and therefore, we improve the model. The experimental findings indicate that homoconjugation can function directly as a coupling pathway between the two spin centers, which is in qualitative agreement with the DFT theoretical calculations and the Borden rule. This research has found a special means of achieving spin coupling in non-rigid aromatics by means of homoconjugation.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44663096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MagnetochemistryPub Date : 2023-07-08DOI: 10.3390/magnetochemistry9070176
V. Gornakov, I. Shashkov, O. Tikhomirov, Y. Kabanov
{"title":"Spacer Thickness and Temperature Dependences of the Interlayer Exchange Coupling in a Co/Pt/Co Three-Layer Structure","authors":"V. Gornakov, I. Shashkov, O. Tikhomirov, Y. Kabanov","doi":"10.3390/magnetochemistry9070176","DOIUrl":"https://doi.org/10.3390/magnetochemistry9070176","url":null,"abstract":"Domain wall mobility as a function of nonmagnetic interlayer thickness and temperature was studied in ultrathin exchange-coupled ferromagnetic layers using magneto-optic Kerr microscopy. The system under study is a Pt/Co/Pt/Co/Pt heterostructure having perpendicular magnetic anisotropy and a middle Pt layer with spatially variable thickness. The ferromagnetic interaction between the Co layers is observed when the Pt interlayer thickness varies from 5 to 6 nm in a temperature range of 200–300 K. There is a certain interval of Pt layer thickness where domain walls in both ferromagnetic layers move independently. Nonlinear dependence of the domain wall displacement on the applied field was measured. It is shown that an equilibrium position of the relaxed domain wall depends on field, temperature, and the nonmagnetic interlayer thickness. This position is determined by the energy balance: (i) domain wall displacement provided by the applied field, (ii) interlayer exchange interaction in the area swept by the domain wall, and (iii) domain wall coercivity. The mechanism of domain wall stabilization in terms of independent wall motion near critical thickness was considered. It is found that both the coercivity of the Co layer and the critical thickness decrease at higher temperature, while the interlayer exchange constant J is changed weakly.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46160557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MagnetochemistryPub Date : 2023-07-06DOI: 10.3390/magnetochemistry9070175
C. Cruz, N. Audebrand, D. Páez‐Hernández, V. Paredes-García
{"title":"Novel Linear Trinuclear CuII Compound with Trapped Chiral Hemiaminal Ligand: Magnetostructural Study","authors":"C. Cruz, N. Audebrand, D. Páez‐Hernández, V. Paredes-García","doi":"10.3390/magnetochemistry9070175","DOIUrl":"https://doi.org/10.3390/magnetochemistry9070175","url":null,"abstract":"A new trinuclear CuII compound {[Cu3(HL′)2(H2O)2](ClO4)4}·(H2O)4 (1) was obtained and presented a trapped chiral hemiaminal (HL2′ = [(5-amino-4H-1,2,4-triazol-3-yl)amino](1H-imidazol-4-yl)methanol)). Compound 1 shows an almost flat cationic structure [Cu3(HL′)2(H2O)2]4+ with a Cu3 linear core reached by the double Cu-OR/NN-Cu triazole/alkoxo bridge of the hemiaminal molecule. The CuII spin carriers are antiferromagnetically coupled, presenting a spin doublet ground state (S = 1/2) with a magnetic coupling constant of −179 cm−1. Moreover, DTF calculations show that the planarity of the compound permits a sigma-type overlapping between the unpaired electrons of the spin carriers and the p-type orbitals of the coordinated N and O atoms producing an electronic delocalization through the bridging ligand responsible for the strong antiferromagnetic interactions observed experimentally.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42728371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MagnetochemistryPub Date : 2023-07-06DOI: 10.3390/magnetochemistry9070174
R. Kato, T. Tsumuraya
{"title":"Dirac Cone Formation in Single-Component Molecular Conductors Based on Metal Dithiolene Complexes","authors":"R. Kato, T. Tsumuraya","doi":"10.3390/magnetochemistry9070174","DOIUrl":"https://doi.org/10.3390/magnetochemistry9070174","url":null,"abstract":"Single-component molecular conductors exhibit a strong connection to the Dirac electron system. The formation of Dirac cones in single-component molecular conductors relies on (1) the crossing of HOMO and LUMO bands and (2) the presence of nodes in the HOMO–LUMO couplings. In this study, we investigated the possibility of Dirac cone formation in two single-component molecular conductors derived from nickel complexes with extended tetrathiafulvalenedithiolate ligands, [Ni(tmdt)2] and [Ni(btdt)2], using tight-biding models and first-principles density-functional theory (DFT) calculations. The tight-binding model predicts the emergence of Dirac cones in both systems, which is associated with the stretcher bond type molecular arrangement. The DFT calculations also indicate the formation of Dirac cones in both systems. In the case of [Ni(btdt)2], the DFT calculations, employing a vdW-DF2 functional, reveal the formation of Dirac cones near the Fermi level in the nonmagnetic state after structural optimization. Furthermore, the DFT calculations, by utilizing the range-separated hybrid functional, confirm the antiferromagnetic stability in [Ni(btdt)2], as observed experimentally.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49343515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MagnetochemistryPub Date : 2023-07-02DOI: 10.3390/magnetochemistry9070172
Matheus G. R. Gomes, A. de Souza, H. D. Dos Santos, W. D. De Almeida, D. Paschoal
{"title":"Assessment of a Computational Protocol for Predicting Co-59 NMR Chemical Shift","authors":"Matheus G. R. Gomes, A. de Souza, H. D. Dos Santos, W. D. De Almeida, D. Paschoal","doi":"10.3390/magnetochemistry9070172","DOIUrl":"https://doi.org/10.3390/magnetochemistry9070172","url":null,"abstract":"In the present study, we benchmark computational protocols for predicting Co-59 NMR chemical shift. Quantum mechanical calculations based on density functional theory were used, in conjunction with our NMR-DKH basis sets for all atoms, including Co, which were developed in the present study. The best protocol included the geometry optimization at BLYP/def2-SVP/def2-SVP/IEF-PCM(UFF) and shielding constant calculation at GIAO-LC-ωPBE/NMR-DKH/IEF-PCM(UFF). This computational scheme was applied to a set of 34 Co(III) complexes, in which, Co-59 NMR chemical shift ranges from +1162 ppm to +15,100 ppm, and these were obtained in distinct solvents (water and organic solvents). The resulting mean absolute deviation (MAD), mean relative deviation (MRD), and coefficient of determination (R2) were 158 ppm, 3.0%, and 0.9966, respectively, suggesting an excellent alternative for studying Co-59 NMR.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45331573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MagnetochemistryPub Date : 2023-07-01DOI: 10.3390/magnetochemistry9070166
Morkos A Henen, Natasia Paukovich, Rytis Prekeris, Beat Vögeli
{"title":"Solution NMR Backbone Assignment of the C-Terminal Region of Human Dynein Light Intermediate Chain 2 (LIC2-C) Unveils Structural Resemblance with Its Homologue LIC1-C.","authors":"Morkos A Henen, Natasia Paukovich, Rytis Prekeris, Beat Vögeli","doi":"10.3390/magnetochemistry9070166","DOIUrl":"https://doi.org/10.3390/magnetochemistry9070166","url":null,"abstract":"<p><p>Dynein, a homodimeric protein complex, plays a pivotal role in retrograde transportation along microtubules within cells. It consists of various subunits, among which the light intermediate chain (LIC) performs diverse functions, including cargo adaptor binding. In contrast to the vertebrate LIC homolog LIC1, LIC2 has received relatively limited characterization thus far, despite partially orthogonal functional roles. In this study, we present a near-to-complete backbone NMR chemical shift assignment of the C-terminal region of the light intermediate chain 2 of human dynein 1 (LIC2-C). We perform a comparative analysis of the secondary structure propensity of LIC2-C with the one previously reported for LIC1-C and show that the two transient helices in LIC1 that interact with motor adaptors are also present in LIC2.</p>","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":"9 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10358425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9851194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MagnetochemistryPub Date : 2023-06-30DOI: 10.3390/magnetochemistry9070170
Roman Atanasov, Ecaterina Brinza, R. Bortnic, R. Hirian, G. Souca, L. Barbu-Tudoran, I. Deac
{"title":"Magnetic and Magnetocaloric Properties of Nano- and Polycrystalline Bulk Manganites La0.7Ba(0.3−x)CaxMnO3 (x ≤ 0.25)","authors":"Roman Atanasov, Ecaterina Brinza, R. Bortnic, R. Hirian, G. Souca, L. Barbu-Tudoran, I. Deac","doi":"10.3390/magnetochemistry9070170","DOIUrl":"https://doi.org/10.3390/magnetochemistry9070170","url":null,"abstract":"Here we report the synthesis and investigation of bulk and nano-sized La0.7Ba0.3−xCaxMnO3 (x = 0, 0.15, 0.2 and 0.25) compounds that are promising candidates for magnetic refrigeration applications. We compare the structural and magnetic properties of bulk and nano-scale polycrystalline La0.7Ba0.3−xCaxMnO3 for potential use in magnetic cooling systems. Solid-state reactions were implemented for bulk materials, while the sol–gel method was used for nano-sized particles. Structurally and morphologically, the samples were investigated by X-ray diffraction (XRD), optical microscopy and transmission electron microscopy (TEM). Oxygen stoichiometry was investigated by iodometry. Bulk compounds exhibit oxygen deficiency, while nano-sized particles show excess oxygen. Critical magnetic behavior was revealed for all samples using the modified Arrott plot (MAP) method and confirmed by the Kouvel–Fisher (KF) method. The bulk polycrystalline compound behavior was better described by the tricritical field model, while the nanocrystalline samples were governed by the mean-field model. Resistivity in bulk material showed a peak at a temperature Tp1 attributed to grain boundary conditions and at Tp2 associated with a Curie temperature of Tc. Parent polycrystalline sample La0.7Ba0.3MnO3 has Tc at 340 K. Substitution of x = 0.15 of Ca brings Tc to 308 K, and x = 0.2 brings it to 279 K. Nanocrystalline samples exhibit a very wide effective temperature range in the magnetocaloric effect, up to 100 K. Bulk compounds exhibit a high and sharp peak in magnetic entropy change, up to 7 J/kgK at 4 T at Tc for x = 0.25. To compare the magnetocaloric performances of the studied compounds, both relative cooling power (RCP) and temperature-averaged entropy change (TEC) figures of merit were used. RCP is comparable for bulk polycrystalline and nano-sized samples of the same substitution level, while TEC shows a large difference between the two systems. The combination of bulk and nanocrystalline materials can contribute to the effectiveness and improvement of magnetocaloric materials.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47808498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MagnetochemistryPub Date : 2023-06-30DOI: 10.3390/magnetochemistry9070171
S. A. Qureshi, Haroon Aman, R. Schirhagl
{"title":"Prospects of Using Machine Learning and Diamond Nanosensing for High Sensitivity SARS-CoV-2 Diagnosis","authors":"S. A. Qureshi, Haroon Aman, R. Schirhagl","doi":"10.3390/magnetochemistry9070171","DOIUrl":"https://doi.org/10.3390/magnetochemistry9070171","url":null,"abstract":"The worldwide death toll claimed by Acute Respiratory Syndrome Coronavirus Disease 2019 (SARS-CoV), including its prevailed variants, is 6,812,785 (worldometer.com accessed on 14 March 2023). Rapid, reliable, cost-effective, and accurate diagnostic procedures are required to manage pandemics. In this regard, we bring attention to quantum spin magnetic resonance detection using fluorescent nanodiamonds for biosensing, ensuring the benefits of artificial intelligence-based biosensor design on an individual patient level for disease prediction and data interpretation. We compile the relevant literature regarding fluorescent nanodiamonds-based SARS-CoV-2 detection along with a short description of viral proliferation and incubation in the cells. We also propose a potentially effective strategy for artificial intelligence-enhanced SARS-CoV-2 biosensing. A concise overview of the implementation of artificial intelligence algorithms with diamond magnetic nanosensing is included, covering this roadmap’s benefits, challenges, and prospects. Some mutations are alpha, beta, gamma, delta, and Omicron with possible symptoms, viz. runny nose, fever, sore throat, diarrhea, and difficulty breathing accompanied by severe body pain. The recommended strategy would deliver reliable and improved diagnostics against possible threats due to SARS-CoV mutations, including possible pathogens in the future.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44079119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microstructure and Magnetic Property Evolution Induced by Heat Treatment in Fe-Si/SiO2 Soft Magnetic Composites","authors":"Shaogang Li, Nachuan Ju, Jinyang Wang, Rongyu Zou, Shaochuan Lin, Minghui Yang","doi":"10.3390/magnetochemistry9070169","DOIUrl":"https://doi.org/10.3390/magnetochemistry9070169","url":null,"abstract":"SiO2 has been extensively studied as a superior insulating layer for innovative Fe-based soft magnetic composites (SMCs). During the preparation process of SMCs, appropriate heat treatment can effectively alleviate internal stress, reduce dislocation density, decrease coercivity, and enhance permeability. Maintaining the uniformity and integrity of SiO2 insulating layers during heat treatment is a challenging task. Hence, it is crucial to explore the heat-treatment process and its effects on the magnetic properties of SMCs and their insulating layers. Herein, Fe–Si/SiO2 particles were prepared using chemical vapor deposition (CVD), and Fe–Si/SiO2 SMCs having a core–shell heterostructure were synthesized through hot-press sintering, and investigations were conducted into how heat-treatment temperature affected the microstructure of SMCs. This study thoroughly investigated the relationship between the evolution of SiO2 insulating layers and the magnetic properties. Additionally, the impact of the heat-treatment time on the magnetic properties of Fe-Si/SiO2 SMCs was evaluated. The results showed that in the temperature range of 823–923 K, the core–shell heterostructures grew more homogeneous and uniform. Concurrently, the stress and defects inside the Fe-Si/SiO2 SMCs were eliminated. When the temperature was raised over 973 K, the core–shell heterostructure was disrupted, and SiO2 began to disperse. After following a heat-treatment process (923 K) lasting up to 60 min, the resulting SMCs had high resistivity (1.04 mΩ·cm), the lowest hysteresis loss (P10 mt/100 kHz of 344.3 kW/m3), high saturation magnetization (191.2 emu/g). This study presents a new technique for producing SMCs using ceramic oxide as insulating layers. This study also includes a comprehensive analysis of the relationship between microstructure, magnetic properties, and heat treatment process parameters. These findings are crucial in expanding the potential applications of ceramic oxide.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135099964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MagnetochemistryPub Date : 2023-06-28DOI: 10.3390/magnetochemistry9070168
E. V. Korotaev, M. M. Syrokvashin, V. Sulyaeva, I. Filatova
{"title":"Magnetic Properties of CuCr1−xLaxS2 Thermoelectric Materials","authors":"E. V. Korotaev, M. M. Syrokvashin, V. Sulyaeva, I. Filatova","doi":"10.3390/magnetochemistry9070168","DOIUrl":"https://doi.org/10.3390/magnetochemistry9070168","url":null,"abstract":"The magnetic properties (magnetic susceptibility, magnetic moment) and Weiss constant for lanthanum-doped CuCr1−xLaxS2 (x = 0; 0.005; 0.01; 0.015; 0.03) solid solutions were studied using static magnetochemistry at 80–750 K. The samples were characterized by both powder X-ray diffraction and energy-dispersive X-ray spectroscopy. It was shown that synthesized samples are single-phased up to x ≤ 0.01. The presence of the additional phase in the solid solutions with x > 0.015 caused deviation from the simple isovalent Cr3+→Ln3+ cationic substitution principle. It was found that magnetic susceptibility and the Weiss constant are significantly affected by both magnetic properties and lanthanum concentration for the solid solutions doped up to x = 0.01. The largest magnetic moment value of 3.88 µB was measured for the initial CuCrS2-matrix. The lowest value of 3.77 µB was measured for the CuCr0.99La0.01S2 solid solution. The lowest Weiss constant value of −147 K was observed for the initial matrix; the highest one was observed for CuCr0.99La0.01S2 (−139 K). The largest Seebeck coefficient value of 373 µV/K was measured for CuCr0.985La0.015S2 at 500 K; the obtained value was 3.3 times greater compared to the initial CuCrS2-matrix. The field dependence of the magnetic susceptibility allowed one to conclude the absence of ferromagnetic contributions in the total magnetic susceptibility of CuCr1−xLaxS2. The data on magnetic properties can be successfully utilized to investigate the limits of doping atom suitability and order–disorder phase transition temperature in CuCrS2-based solid solutions.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48496899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}