{"title":"机器学习和金刚石纳米传感在高灵敏度严重急性呼吸系统综合征冠状病毒2型诊断中的应用前景","authors":"S. A. Qureshi, Haroon Aman, R. Schirhagl","doi":"10.3390/magnetochemistry9070171","DOIUrl":null,"url":null,"abstract":"The worldwide death toll claimed by Acute Respiratory Syndrome Coronavirus Disease 2019 (SARS-CoV), including its prevailed variants, is 6,812,785 (worldometer.com accessed on 14 March 2023). Rapid, reliable, cost-effective, and accurate diagnostic procedures are required to manage pandemics. In this regard, we bring attention to quantum spin magnetic resonance detection using fluorescent nanodiamonds for biosensing, ensuring the benefits of artificial intelligence-based biosensor design on an individual patient level for disease prediction and data interpretation. We compile the relevant literature regarding fluorescent nanodiamonds-based SARS-CoV-2 detection along with a short description of viral proliferation and incubation in the cells. We also propose a potentially effective strategy for artificial intelligence-enhanced SARS-CoV-2 biosensing. A concise overview of the implementation of artificial intelligence algorithms with diamond magnetic nanosensing is included, covering this roadmap’s benefits, challenges, and prospects. Some mutations are alpha, beta, gamma, delta, and Omicron with possible symptoms, viz. runny nose, fever, sore throat, diarrhea, and difficulty breathing accompanied by severe body pain. The recommended strategy would deliver reliable and improved diagnostics against possible threats due to SARS-CoV mutations, including possible pathogens in the future.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prospects of Using Machine Learning and Diamond Nanosensing for High Sensitivity SARS-CoV-2 Diagnosis\",\"authors\":\"S. A. Qureshi, Haroon Aman, R. Schirhagl\",\"doi\":\"10.3390/magnetochemistry9070171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The worldwide death toll claimed by Acute Respiratory Syndrome Coronavirus Disease 2019 (SARS-CoV), including its prevailed variants, is 6,812,785 (worldometer.com accessed on 14 March 2023). Rapid, reliable, cost-effective, and accurate diagnostic procedures are required to manage pandemics. In this regard, we bring attention to quantum spin magnetic resonance detection using fluorescent nanodiamonds for biosensing, ensuring the benefits of artificial intelligence-based biosensor design on an individual patient level for disease prediction and data interpretation. We compile the relevant literature regarding fluorescent nanodiamonds-based SARS-CoV-2 detection along with a short description of viral proliferation and incubation in the cells. We also propose a potentially effective strategy for artificial intelligence-enhanced SARS-CoV-2 biosensing. A concise overview of the implementation of artificial intelligence algorithms with diamond magnetic nanosensing is included, covering this roadmap’s benefits, challenges, and prospects. Some mutations are alpha, beta, gamma, delta, and Omicron with possible symptoms, viz. runny nose, fever, sore throat, diarrhea, and difficulty breathing accompanied by severe body pain. The recommended strategy would deliver reliable and improved diagnostics against possible threats due to SARS-CoV mutations, including possible pathogens in the future.\",\"PeriodicalId\":18194,\"journal\":{\"name\":\"Magnetochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/magnetochemistry9070171\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9070171","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Prospects of Using Machine Learning and Diamond Nanosensing for High Sensitivity SARS-CoV-2 Diagnosis
The worldwide death toll claimed by Acute Respiratory Syndrome Coronavirus Disease 2019 (SARS-CoV), including its prevailed variants, is 6,812,785 (worldometer.com accessed on 14 March 2023). Rapid, reliable, cost-effective, and accurate diagnostic procedures are required to manage pandemics. In this regard, we bring attention to quantum spin magnetic resonance detection using fluorescent nanodiamonds for biosensing, ensuring the benefits of artificial intelligence-based biosensor design on an individual patient level for disease prediction and data interpretation. We compile the relevant literature regarding fluorescent nanodiamonds-based SARS-CoV-2 detection along with a short description of viral proliferation and incubation in the cells. We also propose a potentially effective strategy for artificial intelligence-enhanced SARS-CoV-2 biosensing. A concise overview of the implementation of artificial intelligence algorithms with diamond magnetic nanosensing is included, covering this roadmap’s benefits, challenges, and prospects. Some mutations are alpha, beta, gamma, delta, and Omicron with possible symptoms, viz. runny nose, fever, sore throat, diarrhea, and difficulty breathing accompanied by severe body pain. The recommended strategy would deliver reliable and improved diagnostics against possible threats due to SARS-CoV mutations, including possible pathogens in the future.
期刊介绍:
Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.