Sahin Demirci, Mehtap Sahiner, Shaida S. Rumi, Selin S. Suner, Noureddine Abidi, Nurettin Sahiner
{"title":"The Use of Low-Quality Cotton-Derived Cellulose Films as Templates for In Situ Conductive Polymer Synthesis as Promising Biomaterials in Biomedical Applications","authors":"Sahin Demirci, Mehtap Sahiner, Shaida S. Rumi, Selin S. Suner, Noureddine Abidi, Nurettin Sahiner","doi":"10.1002/mame.202400246","DOIUrl":"10.1002/mame.202400246","url":null,"abstract":"<p>Here, the use of cellulose films (CFs) produced from low-quality cotton is reported as a template for in situ synthesis of well-known conductive polymers, e.g., polyaniline (PANI) and polypyrrole (PPY) via oxidative polymerization. Three successive monomer loading/polymerization cycles of aniline (ANI) and pyrrole (PY) within CFs as PANI@CF or PPY@CF are carried out to increase the amount of conductive polymer content. The contact angle (CA) for three times ANI and PPY loaded and polymerized CFs as 3PANI@CF and 3PPY@CF are determined as 26.3±2.8 and 42.3±0.6 degrees, respectively. As the electrical conductivity is increased with increased number of conductive polymer synthesis within CF, the higher conductivity values, 3×10<sup>−4</sup>±8.1×10<sup>−5</sup> S.cm<sup>−1</sup> and 2.1×10<sup>−3</sup>±5.8×10<sup>−4</sup> S.cm<sup>−1</sup>, respectively are measured for 3PANI@CF and 3PPY@CF composites. It is found that PANI@CF composites are hemolytic, whereas PPY@CF composites are not at 1 mg mL<sup>−1</sup> concentrations. All PPY@CF composites exhibit better biocompatibility than PANI@CF composites on L929 fibroblast cells with more than 70±8% viability at 1 mg of CF-based conductive polymer composites. Moreover, MIC and MBC values of 3PPY@CF composites for <i>Escherichia coli</i> (ATCC8739) and <i>Staphylococcus aureus</i> (ATCC6538) are determined as 2.5 and 5.0 mg.mL<sup>−1</sup>, whereas these values are estimated as 5 and 10 mg.mL<sup>−1</sup> for <i>Candida albicans</i> (ATCC10231).</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400246","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recyclable and Stable Strain Sensors Based on Semi-Wrapped Structure of Silver Nanowires in Polyvinyl Alcohol for Human Motion Monitoring","authors":"Yiyi Chen, Yanlin Li, Qi Zhang, Ting Peng, Huangzhong Yu, Shengwei Shi","doi":"10.1002/mame.202400116","DOIUrl":"10.1002/mame.202400116","url":null,"abstract":"<p>Highly sensitive strain sensors have been widely used in human motion monitoring, medical treatment, soft robots, and human–computer interaction, and the recycling of functional materials is in a huge demand for eco-friendly and sustainable electronics. However, the manufacturing of recyclable strain sensors still remains challenging. Here, a semi-wrapped structure based on silver nanowires and polyvinyl alcohol is proposed to realize a recyclable and stable strain sensor. It has shown excellent sensitivity, fast response, high stretchability and good environmental stability, and is successfully applied for human motion monitoring. In addition, a simple strategy is developed to effectively recycle silver nanowires in an eco-friendly manner. The recyclable and stable strain sensor demonstrates potential applications in wearable and stretchable electronics, and the recycling strategy can be extended to other noble metal nanomaterials.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 11","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400116","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development and Evaluation of a Diclofenac-Loaded Thermogel for Topical Treatment of Corneal Alkali Burns","authors":"Zhengwei Ge, Yanying Zhao, Tingting Guo, Shengnan Liang, Zhongping Chen","doi":"10.1002/mame.202400164","DOIUrl":"10.1002/mame.202400164","url":null,"abstract":"<p>Corneal alkali burns have become a frequent and urgent issue in ophthalmology, but current treatments are limited. To address this, a diclofenac-loaded thermogel with anti-inflammatory agents is developed to target inflammation and improve drug delivery for corneal alkali burns. Thermogels are prepared by dissolving methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC) in phosphate-buffered saline (PBS), adding diclofenac (DF), and storing the solution at 4 °C. The thermogel's temperature-sensitive behavior and injectability at 35 °C are assessed. Freeze-dried thermogels are examined using scanning electron microscopy. Rheological properties, swelling behavior, and in vitro release studies are conducted. In vitro and in vivo biocompatibility tests are performed. A corneal alkali burn model is established in rats, and different treatments are administered for 7 days. Eyeballs are collected for histological and molecular analysis. The thermogel formulation formed a stable gel at 35 °C and continuously released DF for 7 days. In vitro and in vivo tests confirmed the thermogels' excellent biocompatibility. The released DF promotes the expression of the anti-inflammatory cytokine interleukin-10 (IL-10) and inhibits the expression of pro-inflammatory factors TNF-α and vascular endothelial growth factor (VEGF). This novel DF/thermogel offers an efficient, topical, and cost-effective approach with significant potential for treating corneal alkali burns.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 12","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400164","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shu-Yung Chang, Joseph Zhi Wei Lee, Anupama Sargur Ranganath, Terry Ching, Michinao Hashimoto
{"title":"Poly(ethylene-glycol)-Dimethacrylate (PEGDMA) Composite for Stereolithographic Bioprinting","authors":"Shu-Yung Chang, Joseph Zhi Wei Lee, Anupama Sargur Ranganath, Terry Ching, Michinao Hashimoto","doi":"10.1002/mame.202400143","DOIUrl":"10.1002/mame.202400143","url":null,"abstract":"<p>Recent progress in additive manufacturing has enabled the application of stereolithography (SLA) in bioprinting to produce 3D biomimetic structures. Bioinks for SLA often require synthetic polymers as supplements to ensure the structural integrity of the printed cell-laden constructs. High molecular weight (MW) poly(ethylene-glycol)-diacrylate (PEGDA) (MW ≥ 3400 Da) is commonly used to enhance the mechanical property of crosslinked hydrogels. However, the production of bioink with high MW PEGDA requires in-house polymer synthesis or the acquisition of costly reagents, which may not be readily available in all laboratory settings. As an alternative to high MW PEGDA, this research investigated the use of poly(ethylene-glycol)-dimethacrylate (PEGDMA) (MW = 1000 Da) as a supplement of a bioink to enhance the mechanical properties of the SLA-printed constructs. The successful demonstration showcases 1) the fabrication of 3D constructs with overhang and complex architecture, and 2) the cytocompatibility, with high cell viability of 71–87% over 6 days of culture, of the GelMA-PEGDMA bioink to enable cell-laden bioprinting. This study suggests PEGDMA as a viable supplement in the formulation of SLA bioink. The accessibility to PEGDMA will facilitate the advance in 3D bioprinting to fabricate complex bioinspired structures and tissue surrogates for biomedical applications.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 11","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400143","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorenzo Zavagna, Eligio F. Canelli, Bahareh Azimi, Fabiola Troisi, Lorenzo Scarpelli, Teresa Macchi, Giuseppe Gallone, Massimiliano Labardi, Roberto Giovannoni, Mario Milazzo, Serena Danti
{"title":"Electrospun Fiber-Based Tubular Structures as 3D Scaffolds to Generate In Vitro Models for Small Intestine","authors":"Lorenzo Zavagna, Eligio F. Canelli, Bahareh Azimi, Fabiola Troisi, Lorenzo Scarpelli, Teresa Macchi, Giuseppe Gallone, Massimiliano Labardi, Roberto Giovannoni, Mario Milazzo, Serena Danti","doi":"10.1002/mame.202400123","DOIUrl":"10.1002/mame.202400123","url":null,"abstract":"<p>Recently, in vitro models emerge as valuable tools in biomedical research by enabling the investigation of complex physiological processes in a controlled environment, replicating some traits of interest of the biological tissues. This study focuses on the development of tubular polymeric scaffolds, made of electrospun fibers, aimed to generate three-dimensional (3D) in vitro intestinal models resembling the lumen of the gut. Polycaprolactone (PCL) and polyacrylonitrile (PAN) are used to produce tightly arranged ultrafine fiber meshes via electrospinning in the form of continuous tubular structures, mimicking the basement membrane on which the epithelial barrier is formed. Morphological, physical, mechanical, and piezoelectric properties of the PCL and PAN tubular scaffolds are investigated. They are cultured with Caco-2 cells using different biological coatings (i.e., collagen, gelatin, and fibrin) and their capability of promoting a compact epithelial layer is assessed. PCL and PAN scaffolds show 42% and 50% porosity, respectively, with pore diameters and size suitable to impede cell penetration, thus promoting an intestinal epithelial barrier formation. Even if both polymeric structures allow Caco-2 cell adhesion, PAN fiber meshes best suit many requirements needed by this model, including highest mechanical strength upon expansion, porosity and piezoelectric properties, along with the lowest pore size.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 10","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400123","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Speckle Pattern Analysis of PVK:rGO Composite Based Memristor Device","authors":"Ramin Jamali, Madeh Sajjadi, Babak Taherkhani, Davood Abbaszadeh, Ali-Reza Moradi","doi":"10.1002/mame.202400213","DOIUrl":"10.1002/mame.202400213","url":null,"abstract":"<p>The memristors are expected to be fundamental devices for neuromorphic systems and switching applications. The device made of a sandwiched layer of poly(N- vinylcarbazole) and reduced graphene composite between asymmetric electrodes (ITO/PVK:rGO/Al) exhibits bistable resistive switching behavior. The performance of the memristor can be optimized by controlling the doped graphene oxide. To assess the device performance when it switches between ON and OFF states, optical characterization approaches are highly promising due to their non-destructive and remote nature. Here, speckle pattern (SP) analysis to this end is introduced. SPs include a huge amount of information about their generating mechanism, which is extracted through statistical elaboration. SPs of the PVK:rGO in different states in situ and examine the conduction mechanism is acquired. The variations in the statistical parameters are attributed to the resistance state of the PVK:rGO with regard to the physical switching mechanism. The resistance/conduction state, in turn, depends on the activity and properties of PVK:rGO memristors, as well as the additional non-uniformities induced through the variations of density of carriers. The present optical methodology can be potentially served as a bench-top device for characterization purposes of similar devices during their operating.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 12","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400213","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessing Extraction Methods and Mechanical and Physicochemical Properties of Algerian Yucca Fibers for Sustainable Composite Reinforcement","authors":"Mohamed Amine Kacem, Moussa Guebailia, Nassila Sabba, Said Abdi, Mahdi Bodaghi","doi":"10.1002/mame.202400082","DOIUrl":"10.1002/mame.202400082","url":null,"abstract":"<p>The utilization of biofiber in recent years has significantly increased due to its advantages like being environmentally friendly, availability, and low costs. This paper investigates the physicochemical, mechanical, and morphological properties of the yucca fiber extracted by three methods such as water-retting, traditional, and chemical methods. These analyses are designed to evaluate the extraction methodology and the hypothesis of the influence of harvesting location and growth conditions of the fiber. Various technologies are used, such as SEM, FTIR, XRD, and tensile tests. The fiber extracted by water retting is the strongest in the mechanical analysis with a strength of 690.48 MPa, followed by fiber extracted with the traditional method with 685.48 MPa, also 673.06, 657.94, 373.68 MPa for the fiber extracted by the chemical method using 3%, 5%, 10%NaOH respectively. The fiber obtained by the water retting method also has a higher chemical composition with 80.25% cellulose, 10.45% lignin, and 13.75% hemicellulose. The morphological characteristics are examined using Scanning Electron Microscopy. The crystallinity index ranged from 61.75% to 70.77%, and crystallite size from 1.73 to 2.04 nm is calculated from the XRD analysis. All these results confirm that yucca fiber can be a good sustainable choice for composite reinforcement.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 10","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Graphene Oxide-Incorporated Polylactic Acid/Polyamidoamine Dendrimer Electroconductive Nanocomposite as a Promising Scaffold for Guided Tissue Regeneration","authors":"Fatemeh Koeini, Atefeh Solouk, Somaye Akbari","doi":"10.1002/mame.202400100","DOIUrl":"10.1002/mame.202400100","url":null,"abstract":"<p>In the recent years, electroconductive scaffolds have shown promising capabilities in guided regeneration of electroactive tissues including nerve, heart muscle, bone, cartilage, and skin. Herein, the fabrication of a novel electroconductive poly (L-lactic acid) (PLLA)/polyamidoamine (PAMAM) dendrimer nanofibrous scaffold containing graphene oxide (GO) nanosheets is described. The presence of PAMAM with amine terminal groups successfully aminolyzed PLLA. Interestingly, both PAMAM (5% w/w) and GO (0.5, 1, 2% w/w) not only contributed to reducing the fiber diameter, increasing the hydrophilicity and degradation rate, but also provided a nanocomposite scaffold with enhancement in electrical conductivity. By incorporating 1% w/w of GO, the nanocomposite scaffold exhibited optimized properties, including electrical conductivity (≈3.09 × 10<sup>−5</sup> S m<sup>−1</sup>), crystallinity (≈ 47%), Young's modulus (≈16.95 MPa), as well as strength (≈1.58 MPa). This nanocomposite also demonstrated significant antibacterial activity of ≥ 90% against both gram-positive and gram-negative bacteria. Cellular assays confirmed acceptable cytocompatibility of the nanocomposite scaffolds containing GO and PAMAM, which can support the viability and proliferation of PC-12 cells. In conclusion, the presence of GO nanosheets alongside PAMAM dendrimers can synergically promote the properties of the prepared nanofibrous mats which can be used as potential electroconductive scaffolds for guided tissue regeneration.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 11","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400100","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ogün Bozkaya, Esra Bozkaya, Hüsamettin Ekici, Mehmet Eray Alçığır, Yaşar Şahin, Nebahat Aytuna Çerçi, Siyami Karahan, Mustafa Yiğitoğlu, İbrahim Vargel
{"title":"Evaluation of Burn Wound Healing Efficacy and Biocompatibility of Centella asiatica Mediated Synthesised AgNPs Loaded Hybrid Nanofiber Scaffold: In Vitro and In Vivo Studies","authors":"Ogün Bozkaya, Esra Bozkaya, Hüsamettin Ekici, Mehmet Eray Alçığır, Yaşar Şahin, Nebahat Aytuna Çerçi, Siyami Karahan, Mustafa Yiğitoğlu, İbrahim Vargel","doi":"10.1002/mame.202400186","DOIUrl":"10.1002/mame.202400186","url":null,"abstract":"<p>The aim of this study is to evaluate the cell responses, potential skin reactions during the treatment process and burn wound healing efficacy of electrospun polycaprolactone/polyethylene oxide (PCL/PEO) nanofibers (NFs) containing <i>Centella asiatica</i> mediated synthesized silver nanoparticles (CA-AgNPs) by in vitro and in vivo studies. Apoptosis-necrosis, genotoxicity, hemolysis, and cell attachment studies are carried out within the scope of in vitro tests, and irritation, sensitivity, and burn wound studies are carried out within the scope of in vivo tests. The apoptotic index value of CA-AgNPs-[PCL/PEO] NFs material on L929 fibroblast cells is determined as 5.0 ± 1.0% at the highest concentration and the necrotic index value is 5.0 ± 0.3%. Micronucleus rates (%) of NFs treated with CHO (Chinese Hamster Ovary) cells are not at genotoxic level. The hemolytic index value of NFs dressing is determined as 0.23 ± 0.03%, The primary irritation index (PII) value of NFs wound dressing is calculated as 0.36 by irritation tests. In addition, the potential sensitization reaction of NFs extract on guinea pigs is evaluated and the sensitization score is determined as 0.9. The healing efficacy of NFs material on second-degree burn wounds compared to a commercial product is supported by pathomorphological findings.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 12","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400186","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sena Maulana, Ika Putri Setiawan, Dyah Pusbanarum, Petar Antov, Apri Heri Iswanto, Lubos Kristak, Seng Hua Lee, Muhammad Adly Rahandi Lubis
{"title":"Adhesion and Cohesion Performance of Polyurethane Made of Bio-Polyol Derived from Modified Waste Cooking Oil for Exterior Grade Plywood","authors":"Sena Maulana, Ika Putri Setiawan, Dyah Pusbanarum, Petar Antov, Apri Heri Iswanto, Lubos Kristak, Seng Hua Lee, Muhammad Adly Rahandi Lubis","doi":"10.1002/mame.202400225","DOIUrl":"10.1002/mame.202400225","url":null,"abstract":"<p>This study explored the feasibility of Waste Cooking Oil (WCO)-based Bio-Polyurethane (Bio-PU) as an eco-friendly alternative to petroleum-derived polyols in plywood adhesives. The objective is to evaluate the impact of varied WCO concentrations and methylene diphenyl diisocyanate (MDI) levels on Bio-PU and plywood performance. The Bio-PU's characteristics, rheology, and functional groups are studied. Plywood made from three layers of 100 mm x 100 mm × 2 mm rubberwood (<i>Hevea brasiliensis</i>) veneer is bonded with Bio-PU using a dual spread approach at 180 g.m<sup>−2</sup>, hot pressed at 120 °C and 1 MPa for 4 min. The laboratory-fabricated plywood is tested for physical, mechanical, and adhesive properties. Results showed that Bio-PU exhibited unique adhesive characteristics, with excellent adhesive strength, despite a slight decrease with higher WCO concentrations. WCO insertion do not compromise delamination resistance. FTIR analysis confirmed successful polyurethane chain synthesis. This research highlighted the potential of WCO-based Bio-PU's as a sustainable, high-performance plywood adhesive.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 12","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400225","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}