Lubricants最新文献

筛选
英文 中文
Simple Deconvolution Models for Evaluating the True Microhardness of Thin Nanostructured Coatings Deposited via an Advanced Physical Vapor Deposition Technique 评估通过先进物理气相沉积技术沉积的纳米结构薄涂层真实显微硬度的简单去卷积模型
IF 3.5 3区 工程技术
Lubricants Pub Date : 2023-11-26 DOI: 10.3390/lubricants11120501
U. Kanders, K. Kanders, Ernests Jansons, Jānis Lungevičs, Raimonds Sirants, A. Leitans, Irina Boiko
{"title":"Simple Deconvolution Models for Evaluating the True Microhardness of Thin Nanostructured Coatings Deposited via an Advanced Physical Vapor Deposition Technique","authors":"U. Kanders, K. Kanders, Ernests Jansons, Jānis Lungevičs, Raimonds Sirants, A. Leitans, Irina Boiko","doi":"10.3390/lubricants11120501","DOIUrl":"https://doi.org/10.3390/lubricants11120501","url":null,"abstract":"This article discusses the micromechanical properties and true microhardness determination of nanostructured tribological coatings (NTCs) based on a multilayered alternating nitride/carbonitride bilayer substructure for transition metals. The constituent nitride/carbonitride bilayers in the superlattice structure of the NTC were alloyed with refractory metals, denoted as Me = Me1 or Me2= Cr, Hf, Nb, W, and Zr. The resulting NTC coatings were deposited onto 100Cr6 steel substrates using an advanced physical vapor deposition (PVD) technique, referred to here as high-power ion-plasma magnetron sputtering (HiPIPMS). The comprising crystalline nanometer-scale TiAlSiMe1-N/TiMe2-CN nanoparticles strengthened by Me additives significantly increased the NTC microhardness to over 3200 HV. The primary focus of this research was to determine the true microhardness of the NTC film samples. The apparent microhardness (Ha) of the film/substrate system for various NTC samples was measured during microindentation testing using the Vickers method. Nine NTC samples were tested, each generating a corresponding microindentation dataset containing between 430 and 640 imprints, depending on the specific NTC sample. These datasets were analyzed using three distinct empirical approaches: (i) the inverse power-law model (IPL-Model), (ii) the sigmoid-like decay model (SLD-Model), and (iii) the error function model (ERF-Model). The observed solid correlation between the proposed models and experiments suggests that the true microhardness estimates (Hf) obtained through the empirical mathematical modeling approach are reliable.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"1 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139235447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lubrication Performance of Misaligned Journal Bearings with Flexible Structure under Shock Load Conditions 冲击载荷条件下具有柔性结构的错位滑动轴承的润滑性能
IF 3.5 3区 工程技术
Lubricants Pub Date : 2023-11-25 DOI: 10.3390/lubricants11120500
Sung-Ho Hong, Woo-Ju Jeon
{"title":"Lubrication Performance of Misaligned Journal Bearings with Flexible Structure under Shock Load Conditions","authors":"Sung-Ho Hong, Woo-Ju Jeon","doi":"10.3390/lubricants11120500","DOIUrl":"https://doi.org/10.3390/lubricants11120500","url":null,"abstract":"Bearings might be damaged due to shock loads caused by disturbances, in addition to static loads. In this study, a flexible structure was applied to enhance the lubrication characteristics of misaligned journal bearings subjected to impact loads. When an impact load is added to the bearing, a misaligned journal bearing has a high possibility of metal-to-metal contact. It might also lead to failure. Misalignment can occur at any time during bearing operation. A flexible structure is applied to the end of the bearing as a way to improve lubrication performance in a system where impact loads might be applied. The bearing’s lubrication performance was numerically assessed under unsteady-state conditions. An elastohydrodynamic lubrication analysis was conducted, taking into account elastic deformation. The lubrication characteristics of misaligned journal bearings were compared with the dimensionless minimum film thickness. The flexible structure and elastic modulus of the bearing were investigated so that it could support the load without contact according to the change in the maximum magnitude of the impact load. When subjected to oil film pressure, this flexible structure underwent elastic deformation, resulting in enlargement of the oil film. A misaligned journal bearing with a suitable flexible structure provided stable lubrication without metal-to-metal contact, even under shock load conditions. The flexible structure was incorporated into the high-load-bearing region of the journal bearing as a groove. Therefore, the application of a flexible structure in misaligned journal bearings can effectively enhance lubrication performance in misaligned conditions and under shock loads.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"101 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139237652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Difference in the Action of Anti-Wear Additives in Hydrocarbon Oils and Vegetable Triglycerides 碳氢油和植物甘油三酯中抗磨添加剂作用的差异
IF 3.5 3区 工程技术
Lubricants Pub Date : 2023-11-24 DOI: 10.3390/lubricants11120499
I. Mukhortov, E. Zadorozhnaya, I. Levanov, Sergey Surovtcev
{"title":"On the Difference in the Action of Anti-Wear Additives in Hydrocarbon Oils and Vegetable Triglycerides","authors":"I. Mukhortov, E. Zadorozhnaya, I. Levanov, Sergey Surovtcev","doi":"10.3390/lubricants11120499","DOIUrl":"https://doi.org/10.3390/lubricants11120499","url":null,"abstract":"This paper examines the difference between the effects of anti-wear additives on vegetable and hydrocarbon-based oils. Knowledge of the specific influence of additives on the anti-wear properties of vegetable oils is necessary to increase the efficiency of the development of biodegradable lubricating oils. In addition, this is interesting from the point of view of clarifying the mechanism of action of AW/EP additives. The effect of non-toxic additives—adipic acid monoester and hexadecanol—on hydrocarbon hydrocracking oil and vegetable oil was compared. The comparison was carried out in rolling contact with sliding, sensitive to the separating ability of the oil. It was found that in hydrocarbon oil, the additive affects the parameters of the hydrodynamic friction regime. When adding an additive to vegetable oil, the hydrodynamic parameters do not change. The additive acts in the same way in both oils during mixed and transient modes. The obtained results are compared to available data, and an explanation of the difference is proposed based on the AW/EP mechanism of action. It is concluded that there is little chance of enhancing vegetable oil properties for hydrodynamic bearings. Search criteria for additives that effectively influence the antifriction and anti-wear properties of vegetable oils in mixed and boundary friction modes are proposed.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"90 3","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139239071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Instability of Rigid Shoe Modes in a Drum Brake System 鼓式制动器系统中刚性蹄模的动态不稳定性
IF 3.5 3区 工程技术
Lubricants Pub Date : 2023-11-22 DOI: 10.3390/lubricants11120496
Dongwoo Seo, Jaeyoung Kang
{"title":"Dynamic Instability of Rigid Shoe Modes in a Drum Brake System","authors":"Dongwoo Seo, Jaeyoung Kang","doi":"10.3390/lubricants11120496","DOIUrl":"https://doi.org/10.3390/lubricants11120496","url":null,"abstract":"This study examined the dynamic instability of a drum brake induced by the rigid modes of the brake shoe. The brake shoe was modeled as a rigid curved plate subject to frictional contact with a rotating drum. In the presence of a negatively sloped friction curve, dynamic instability was numerically analyzed with respect to variation in the system parameters. The results showed that mode-coupling instability did not occur, but dynamic instability was induced by negative damping in a specific rigid mode, and its propensity varied with the operating conditions and geometric changes.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"11 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139246938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Varying the Volume Fractions of Ledeburitic Cementite and Graphite on the Tribological Properties of Commercially Used Cast Irons 改变辉绿岩和石墨的体积分数对商用铸铁摩擦学特性的影响
IF 3.5 3区 工程技术
Lubricants Pub Date : 2023-11-22 DOI: 10.3390/lubricants11120498
Ł. Frocisz, Piotr Matusiewicz, Janusz Krawczyk
{"title":"Effect of Varying the Volume Fractions of Ledeburitic Cementite and Graphite on the Tribological Properties of Commercially Used Cast Irons","authors":"Ł. Frocisz, Piotr Matusiewicz, Janusz Krawczyk","doi":"10.3390/lubricants11120498","DOIUrl":"https://doi.org/10.3390/lubricants11120498","url":null,"abstract":"The types and volume fractions of the carbonaceous phases present in the microstructures of cast irons strongly influence their properties. In the case of materials used commercially for tools, an important parameter with regard to their use is the resistance to abrasion wear. Cementite is the main reinforcing phase in cast irons and is present in significant quantities. In addition, cast irons contain graphite precipitates, which also affect wear by interacting with the matrix of the alloys. In this study, abrasive wear tests were carried out on a group of cast irons with different chemical compositions and, consequently, different microstructural morphologies. Due to the wide scatter of the results and the commercial rather than laboratory nature of the alloys studied, it was decided to use analysis of variance (ANOVA) to determine whether there was a statistically significant difference between the volume fractions of the carbonaceous phases. The volume fractions of graphite and ledeburite were then related to the results of the tribological tests. Statistical analysis confirmed significant differences in the results obtained for the alloys tested. A continuous increase in the volume fractions of both graphite and ledeburitic cementite is unfavourable in terms of the wear resistance and friction coefficient values. Optimum results can be obtained by balancing the volume fractions of the two phases observed. In addition, the phase composition of the material matrix plays an important role in wear, as the differences in the matrix of the tested alloys modify the nature of the influence of cementite and graphite on the wear.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"394 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139247500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning for Film Thickness Prediction in Elastohydrodynamic Lubricated Elliptical Contacts 用于弹流润滑椭圆形触头薄膜厚度预测的机器学习技术
IF 3.5 3区 工程技术
Lubricants Pub Date : 2023-11-22 DOI: 10.3390/lubricants11120497
Joe Issa, Alain El Hajj, Philippe Vergne, W. Habchi
{"title":"Machine Learning for Film Thickness Prediction in Elastohydrodynamic Lubricated Elliptical Contacts","authors":"Joe Issa, Alain El Hajj, Philippe Vergne, W. Habchi","doi":"10.3390/lubricants11120497","DOIUrl":"https://doi.org/10.3390/lubricants11120497","url":null,"abstract":"This study extends the use of Machine Learning (ML) approaches for lubricant film thickness predictions to the general case of elliptical elastohydrodynamic (EHD) contacts, by considering wide and narrow contacts over a wide range of ellipticity and operating conditions. Finite element (FEM) simulations are used to generate substantial training and testing datasets that are used within the proposed ML framework. The complete dataset entails 915 samples; split into an 823-sample training dataset and a 92-sample testing dataset, corresponding to 90% and 10% of the combined dataset samples, respectively. The proposed ML model consists of a pre-processing stage in which conventional EHD dimensionless groups are used to minimize the number of inputs into the model, reducing them to only three. The core of the model is based on Gaussian Process Regression (GPR), a powerful ML regression tool, well-suited for small-sized datasets, producing output central and minimum film thicknesses, also in dimensionless form. The last stage is a post-processing one, in which the output film thicknesses are retrieved in dimensional from. The results reveal the capabilities and potential of the proposed ML framework, producing quasi-instantaneous predictions that are far more accurate than conventional film thickness analytical formulae. In fact, the produced central and minimum film thickness predictions are on average within 0.3% and 1.0% of the FEM results, respectively.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"29 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139247470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the Pumping Behavior of Macroscopic Lead Structures on Shaft Counterfaces of Rotary Shaft Seals 旋转轴密封轴台面宏观引线结构的泵送行为建模
IF 3.5 3区 工程技术
Lubricants Pub Date : 2023-11-20 DOI: 10.3390/lubricants11110495
Maximilian Engelfried, Georg Haffner, Matthias Baumann, F. Bauer
{"title":"Modeling the Pumping Behavior of Macroscopic Lead Structures on Shaft Counterfaces of Rotary Shaft Seals","authors":"Maximilian Engelfried, Georg Haffner, Matthias Baumann, F. Bauer","doi":"10.3390/lubricants11110495","DOIUrl":"https://doi.org/10.3390/lubricants11110495","url":null,"abstract":"The leak tightness of the sealing system rotary shaft seal is based on the formation of an active back-pumping effect of the sealing ring. Here, the sealing ring pumps the fluid in the sealing gap back into the housing. However, this active sealing mechanism is disturbed by so-called “lead structures”. Lead structures include all types of directional structures on the sealing counterface which create rotation-dependent axial fluid pumping. Lead-affected sealing counterfaces can thus cause leakage or insufficient lubrication of the sealing contact. To ensure leak tightness, lead must be avoided or tolerated. This article investigates how different structural characteristics of lead affect the amount of fluid pumped by the shaft surface. For this purpose, 26 shafts are subjected to surface analyzing methods and an experimental pumping rate test. The interaction of various geometric features of the lead structures and their combined effect on the pumping capacity is modeled based on the measured data. Appropriated correlation models are discussed and relationships between shaft lead and its pumping effect are shown. The aim is to estimate shaft pumping rates based on surface measurements in future. The results contribute to the derivation of measurable tolerance values for lead and to the prevention of leakage.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"1 4","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139255725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of Machining Performance of Ti-6Al-4V under Dry and Cryogenic Techniques Based on Tool Wear, Surface Roughness, and Power Consumption 基于刀具磨损、表面粗糙度和功耗的干式和低温技术下 Ti-6Al-4V 加工性能比较
IF 3.5 3区 工程技术
Lubricants Pub Date : 2023-11-15 DOI: 10.3390/lubricants11110493
Dhvanil Chauhan, M. Makhesana, R. R. Rahman Rashid, Vivek Joshi, Navneet Khanna
{"title":"Comparison of Machining Performance of Ti-6Al-4V under Dry and Cryogenic Techniques Based on Tool Wear, Surface Roughness, and Power Consumption","authors":"Dhvanil Chauhan, M. Makhesana, R. R. Rahman Rashid, Vivek Joshi, Navneet Khanna","doi":"10.3390/lubricants11110493","DOIUrl":"https://doi.org/10.3390/lubricants11110493","url":null,"abstract":"The machining of Ti-6Al-4V alloys is challenging due to their high strength, poor thermal conductivity, and high chemical reactivity. When used in traditional machining, cryogenic coolants can reduce tool wear, thus extending tool life, improving surface finish, and requiring less power with reduced environmental effects. In this context, this study aimed to perform a machinability analysis of the surface roughness, power consumption, tool wear, and specific energy consumption of a Ti-6Al-4V titanium alloy and to comprehend the performance of dry and cryogenic machining in turning operations. A comprehensive analysis of tool wear and specific cutting energy (SCE) under dry and cryogenic machining was conducted. It was found that the machining time under a cryogenic environment was increased by 83% and 39% at 80 and 90 m/min compared to a cutting speed at 100 m/min. The higher cutting speed (100 m/min) in cryogenic environments produced an improved surface finish. Compared to dry machining, the cooling effect of liquid CO2 helped dissipate heat and reduce thermal damage, improving surface finish. The findings revealed that in dry conditions, approximately 5.55%, 26.45%, and 27.61% less power was consumed than in cryogenic conditions at 80, 90, and 100 m/min cutting speeds, respectively. Based on the outcomes of the work, the application of cryogenic cooling can be considered an alternative to dry and flood cooling for improving the machinability of Ti-6Al-4V alloys.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"35 4","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139270816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Olive Pomace Oil as a Chainsaw Lubricant: First Results of Tests on Performance and Safety Aspects 橄榄渣油作为电锯润滑油:性能和安全方面测试的初步结果
IF 3.5 3区 工程技术
Lubricants Pub Date : 2023-11-15 DOI: 10.3390/lubricants11110494
R. Fanigliulo, Paolo Bondioli, M. Biocca, R. Grilli, P. Gallo, L. Fornaciari, L. Folegatti, Stefano Benigni, Igor Calderari, Francesco Gallucci, D. Pochi
{"title":"Olive Pomace Oil as a Chainsaw Lubricant: First Results of Tests on Performance and Safety Aspects","authors":"R. Fanigliulo, Paolo Bondioli, M. Biocca, R. Grilli, P. Gallo, L. Fornaciari, L. Folegatti, Stefano Benigni, Igor Calderari, Francesco Gallucci, D. Pochi","doi":"10.3390/lubricants11110494","DOIUrl":"https://doi.org/10.3390/lubricants11110494","url":null,"abstract":"The total loss lubrication system that is typical of chainsaws is responsible for a massive dispersion in the agro-forestry environment of highly impactful pollutants, mostly of fossil origin, often well known as carcinogenic substances, which, in addition to presenting a risk to the environment, represent an important risk factor for human health, especially for chainsaw users. During its use, the chain lubricant is dispersed from the guide bar tip in the form of droplets and aerosol, or it is adsorbed on wood residues and sawdust. Then, it is subjected to drift, settles on the ground and vegetation, and can hit the operators, who, after prolonged exposures, can suffer both irritation of the respiratory tract and dermal absorption. Such a risk factor is often amplified by the widespread use of less-expensive, sometimes illegal alternatives, such as exhausted motor oils. To mitigate said negative effects, a process has been in progress for several years that is aimed at replacing conventional lubricants with synthetic or biobased oils with increasing biodegradability. As a contribution to this process, a study has been started on the possibility of using refined olive pomace oil (ROPO) as a base stock for the formulation of a totally biodegradable chainsaw lubricant. On purpose, to improve its properties of viscosity and adhesivity, such an oil was added with a biodegradable thickening agent, obtaining four formulations with different viscosity. After a lab test and a preliminary cutting test on firewood, the formulation with 2% of thickener resulted in being the best, and 3.0 g kg−1 of tert-butylhydroquinone (TBHQ), a food-grade antioxidant, was then added to form the final formulation (F2) to be compared, in the subsequent four test sessions, to a biodegradable commercial chain lubricant (SB). The tests were carried out without changing the chainsaw setting, on different wood species, both in forest and, with the aim of increasing the repeatability of tests conditions and comparability of results, at a fixed point. The fluids’ performances were mainly evaluated based both on the operators’ opinions and on the measurements of the chain–bar temperatures and of saw chain wear related to a predefined number of cuts. As to the destiny of the fluid dispersed during cutting, the overall dispersion was assessed by considering the average working time, the consumption of chain lubricant, and the forest area cut down daily. Eventually, the amounts of inhalable and respirable dust particles as vectors of oil residues were quantified by means of personal air samplers worn by the operators and analyzed to determine any differences in the concentration of metallic elements. The test results evidenced chain temperatures that were 0.5, 4.9, and 12.5 °C higher with F2 relating to SB, respectively, in the cutting of trunks of fresh Pinus, Eucalyptus, and dry Pinus. They were accompanied by chain weight losses of 89.5% and 35% higher with F2 relating to SB, respe","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"9 5","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139273240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tribological Property of Al3BC3 Ceramic: A Lightweight Material 轻质材料Al3BC3陶瓷的摩擦学性能
3区 工程技术
Lubricants Pub Date : 2023-11-14 DOI: 10.3390/lubricants11110492
Jinjun Lu, Rong Qu, Fuyan Liu, Tao Wang, Qinglun Che, Yanan Qiao, Ruiqing Yao
{"title":"Tribological Property of Al3BC3 Ceramic: A Lightweight Material","authors":"Jinjun Lu, Rong Qu, Fuyan Liu, Tao Wang, Qinglun Che, Yanan Qiao, Ruiqing Yao","doi":"10.3390/lubricants11110492","DOIUrl":"https://doi.org/10.3390/lubricants11110492","url":null,"abstract":"Lightweight materials with a density less than 3 g/cm3 as potential tribo-materials for tribological applications (e.g., space tribology) are always desired. Al3BC3 ceramic, a kind of ternary material, is one of the lightweight materials. In this study, dense Al3BC3 ceramic is prepared via a reactive hot-pressing process in a vacuum furnace. Its tribological properties are investigated in two unlubricated conditions (one is at elevated temperature up to 700 °C in air, and another is in a vacuum chamber of back pressures from 105 Pa to 10−2 Pa at room temperature) and lubricated conditions (i.e., water and ethanol as low-viscosity fluids). At 400 °C and lower temperatures in air, as well as in vacuum, the tribological property of Al3BC3 ceramic is poor due to the fracture of grains and formation of a mechanically mixed layer. The beneficial influence of adsorbed gas species on reducing friction is very limited. Due to the formation of lubricious tribo-oxide at 600 °C and 700 °C, the friction coefficient is reduced from ca. 0.9 at room temperature and 400 °C to ca. 0.4. In the presence of low-viscosity fluids, a high friction coefficient and wear but a polished surface are observed in water, while a low friction coefficient and wear occur in ethanol. A lubricious carbide-derived carbon (CDC) coating on top of Al3BC3 ceramic through high-temperature chlorination can be fabricated and the wear resistance of CDC can be improved by adjusting the chlorination parameters. The above results suggest that Al3BC3 ceramic is a potential lubricating material for some tribological applications.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"63 23","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134901027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信