Tribological Property of Al3BC3 Ceramic: A Lightweight Material

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Jinjun Lu, Rong Qu, Fuyan Liu, Tao Wang, Qinglun Che, Yanan Qiao, Ruiqing Yao
{"title":"Tribological Property of Al3BC3 Ceramic: A Lightweight Material","authors":"Jinjun Lu, Rong Qu, Fuyan Liu, Tao Wang, Qinglun Che, Yanan Qiao, Ruiqing Yao","doi":"10.3390/lubricants11110492","DOIUrl":null,"url":null,"abstract":"Lightweight materials with a density less than 3 g/cm3 as potential tribo-materials for tribological applications (e.g., space tribology) are always desired. Al3BC3 ceramic, a kind of ternary material, is one of the lightweight materials. In this study, dense Al3BC3 ceramic is prepared via a reactive hot-pressing process in a vacuum furnace. Its tribological properties are investigated in two unlubricated conditions (one is at elevated temperature up to 700 °C in air, and another is in a vacuum chamber of back pressures from 105 Pa to 10−2 Pa at room temperature) and lubricated conditions (i.e., water and ethanol as low-viscosity fluids). At 400 °C and lower temperatures in air, as well as in vacuum, the tribological property of Al3BC3 ceramic is poor due to the fracture of grains and formation of a mechanically mixed layer. The beneficial influence of adsorbed gas species on reducing friction is very limited. Due to the formation of lubricious tribo-oxide at 600 °C and 700 °C, the friction coefficient is reduced from ca. 0.9 at room temperature and 400 °C to ca. 0.4. In the presence of low-viscosity fluids, a high friction coefficient and wear but a polished surface are observed in water, while a low friction coefficient and wear occur in ethanol. A lubricious carbide-derived carbon (CDC) coating on top of Al3BC3 ceramic through high-temperature chlorination can be fabricated and the wear resistance of CDC can be improved by adjusting the chlorination parameters. The above results suggest that Al3BC3 ceramic is a potential lubricating material for some tribological applications.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"63 23","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/lubricants11110492","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lightweight materials with a density less than 3 g/cm3 as potential tribo-materials for tribological applications (e.g., space tribology) are always desired. Al3BC3 ceramic, a kind of ternary material, is one of the lightweight materials. In this study, dense Al3BC3 ceramic is prepared via a reactive hot-pressing process in a vacuum furnace. Its tribological properties are investigated in two unlubricated conditions (one is at elevated temperature up to 700 °C in air, and another is in a vacuum chamber of back pressures from 105 Pa to 10−2 Pa at room temperature) and lubricated conditions (i.e., water and ethanol as low-viscosity fluids). At 400 °C and lower temperatures in air, as well as in vacuum, the tribological property of Al3BC3 ceramic is poor due to the fracture of grains and formation of a mechanically mixed layer. The beneficial influence of adsorbed gas species on reducing friction is very limited. Due to the formation of lubricious tribo-oxide at 600 °C and 700 °C, the friction coefficient is reduced from ca. 0.9 at room temperature and 400 °C to ca. 0.4. In the presence of low-viscosity fluids, a high friction coefficient and wear but a polished surface are observed in water, while a low friction coefficient and wear occur in ethanol. A lubricious carbide-derived carbon (CDC) coating on top of Al3BC3 ceramic through high-temperature chlorination can be fabricated and the wear resistance of CDC can be improved by adjusting the chlorination parameters. The above results suggest that Al3BC3 ceramic is a potential lubricating material for some tribological applications.
轻质材料Al3BC3陶瓷的摩擦学性能
密度小于3g /cm3的轻质材料是摩擦学应用(如空间摩擦学)的潜在摩擦学材料。Al3BC3陶瓷是一种三元材料,是轻质材料之一。本研究采用真空炉反应热压法制备致密Al3BC3陶瓷。在两种无润滑条件下(一种是在空气中高达700℃的高温下,另一种是在室温下背压从105 Pa到10 - 2 Pa的真空室中)和润滑条件下(即水和乙醇作为低粘度流体),研究了其摩擦学性能。在空气和真空中,在400℃及更低温度下,由于晶粒断裂和形成机械混合层,Al3BC3陶瓷的摩擦学性能较差。吸附气体种类对减少摩擦的有益影响是非常有限的。由于在600°C和700°C形成了有色氧化三氮,摩擦系数从室温和400°C时的约0.9降低到约0.4。当存在低粘度流体时,在水中观察到高摩擦系数和磨损,但表面光滑,而在乙醇中观察到低摩擦系数和磨损。通过高温氯化法制备了Al3BC3陶瓷表面的有色碳化物衍生碳(CDC)涂层,通过调整氯化工艺参数可以提高CDC的耐磨性。上述结果表明,Al3BC3陶瓷是一种潜在的摩擦学润滑材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信