{"title":"Radii Gurzhi, who pioneered the field of electron hydrodynamics","authors":"A. N. Kalinenko, A. Levchenko","doi":"10.1063/10.0022359","DOIUrl":"https://doi.org/10.1063/10.0022359","url":null,"abstract":"This is the preface article written for the special issue of Low Temperature Physics on the captivating topic of electron hydrodynamics dedicated to the pioneering work of Radii Gurzhi. The article features a brief synopsis of Gurzhi's seminal contributions that have played a pivotal role in shaping this continuously evolving area of condensed matter physics. This tribute is followed by a brief introduction to the collection of contributed papers published in the issue representing recent research in this dynamic field.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"64 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139282648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. Trojanová, S. Daniš, K. Halmešová, J. Džugan, Z. Drozd, K. Máthis, P. Lukáč, R. Z. Valiev
{"title":"Impact of ECAP processing on dislocation density and subgrain size in a ti6al4V alloy prepared by direct energy deposition","authors":"Z. Trojanová, S. Daniš, K. Halmešová, J. Džugan, Z. Drozd, K. Máthis, P. Lukáč, R. Z. Valiev","doi":"10.1063/10.0021367","DOIUrl":"https://doi.org/10.1063/10.0021367","url":null,"abstract":"Ti6Al4V alloy billets were additively manufactured by direct energy deposition and then equal channel angularly pressed (ECAPed) at 700 °C. The originally prepared α′ martensite microstructure was completely converted to an equiaxed fine grain structure during ECAP processing. The α′ martensite decomposed into α + β dual phase structure. The dislocation density in the deposited and ECAPed samples was measured by X-ray profile analysis in samples of two orientations. The dislocation density estimated in the deposition plane was found to be higher than that estimated perpendicularly. This difference is probably a consequence of the internal stresses generated in the samples during the deposition process. A similar anisotropy in dislocation density and crystallite size was found in the ECAPed samples. Lattice constants were measured for the α′ martensite and α phase of the ECAPed alloy. The crystallite size distribution was found to be moderately different for samples cut parallel and perpendicular to the extrusion direction.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"23 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oxygen diffusion in RBa2Cu3O7−δ superconductors: A brief review","authors":"I. L. Goulatis, R. V. Vovk, A. I. Chroneos","doi":"10.1063/10.0021373","DOIUrl":"https://doi.org/10.1063/10.0021373","url":null,"abstract":"The interest in RBa2Cu3O7–δ (R = lanthanides) stems from its superconducting properties. These represent a very significant advance in solid-state materials physics and have been extensively studied for decades, with the aim of increasing the critical temperature by doping or external parameters such as pressure. In the present review, we briefly discuss oxygen diffusion in RBa2Cu3O7–δ with respect to its composition. We consider related compounds as a comparison.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"21 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. D. Tabachnikova, T. V. Hryhorova, S. N. Smirnov, I. V. Kolodiy, Yu. O. Shapovalov, A. V. Levenets, S. E. Shumilin, I. V. Kashuba, M. A. Tikhonovsky, F. Spieckermann, M. J. Zehetbauer, E. Schafler, Y. Huang, T. G. Langdon
{"title":"Structure and cryogenic mechanical properties of severely deformed nonequiatomic alloys of Fe–Mn–Co–Cr system","authors":"E. D. Tabachnikova, T. V. Hryhorova, S. N. Smirnov, I. V. Kolodiy, Yu. O. Shapovalov, A. V. Levenets, S. E. Shumilin, I. V. Kashuba, M. A. Tikhonovsky, F. Spieckermann, M. J. Zehetbauer, E. Schafler, Y. Huang, T. G. Langdon","doi":"10.1063/10.0021377","DOIUrl":"https://doi.org/10.1063/10.0021377","url":null,"abstract":"The work is devoted to a study of the structure and mechanical properties of two nonequiatomic medium-entropy nanocrystalline alloys, in which in a coarse state additional mechanisms act during plastic deformation — twinning (TWIP) in the Fe40Mn40Co10Cr10 alloy and phase transformations (TRIP) in the Fe50Mn30Co10Cr10 alloy. The nanocrystalline state in these alloys is achieved by high-pressure torsion (HPT) at 300 K and 77 K after different numbers of revolutions n = 0.25 and 5. In the nanostructural state in the TWIP Fe40Mn40Co10Cr10 and the TRIP Fe50Mn30Co10Cr10 alloys, a basically complete phase transition from the fcc lattice to hcp is observed, the content of which does not depend very strongly on the HPT temperature and deformation. For both alloys in the nanostructured state, there is a significant decrease in differences in the phase composition and microhardness Hv by comparison with the coarse-grained state. A decrease in the HPT temperature and an increase in HPT deformation for all the cases studied lead to an increase in the value of Hv. The Fe40Mn40Co10Cr10 TWIP alloy remains ductile under active compression deformation at 300 and 77 K, while there is no macroscopic plasticity in the Fe50Mn30Co10Cr10 TRIP alloy under similar conditions. For the Fe40Mn40Co10Cr10 TWIP the thermally-activated character of plastic deformation is retained during the transition from the coarse-grained to the nanostructured state.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"22 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unambiguous coupling between acoustic and electromagnetic emissions in plastically deformed crystals","authors":"K. A. Chishko","doi":"10.1063/10.0021362","DOIUrl":"https://doi.org/10.1063/10.0021362","url":null,"abstract":"An evident coupling between acoustic (AE) and electromagnetic (EME) emissions has been proved experimentally during plastic deformation of LiF ionic monocrystals under uniaxial compression with simultaneous recording of both AE and EME. The strong correlation between AE and EME demonstrate clearly that the observed EME is caused by dynamical dislocations and charged vacancies in the ionic lattice during work hardening. The theoretical interpretation proposed to explain the observable EME is based on the well-known Stepanov effect that means sweeping-up the charged vacancies of a preferable sign by gliding edge dislocations and formation of charged Cottrell clouds. During work hardening dislocation pile-ups are formed, and a certain nonequilibrium charge density is accumulated at their heads, resulting to the dynamic electric polarization of the deformed crystal. As the external loading increases, a locked dislocation pile-up bursts through the stoppers and quickly loses its bound charge. The relaxation of this charge produces intrinsic polarization currents generating electric pulses strongly correlated with dynamic dislocation process during plastic deformation. To build the theoretical model, it is assumed that the relaxation current can be described as an athermic viscous motion of vacancies under the kinetic friction force ∼Bυ (B is the friction coefficient and υ is the vacancy velocity) in a self-consistent electric field determined by the distribution of the total charge density. The electrical signal generated by an acting slip system has been calculated. By comparing the calculated and experimentally measured electric signal patterns, the friction coefficient for the linear chain of vacancies (the analogue of an edge dislocation extra-plane) in LiF has been estimated to be B≃ 0.9⋅10–5 g cm–1⋅s–1. This value is in accordance with the corresponding coefficient for dislocations in ionic lattices.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"27 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135564939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. V. Rusakova, L. S. Fomenko, S. V. Lubenets, V. D. Natsik, A. V. Dolbin, N. A. Vinnikov, R. M. Basnukaeva, S. V. Cherednichenko, A. V. Blyznyuk
{"title":"Low-temperature micromechanical properties of polyolephin/graphene oxide nanocomposites with low weight percent filler","authors":"H. V. Rusakova, L. S. Fomenko, S. V. Lubenets, V. D. Natsik, A. V. Dolbin, N. A. Vinnikov, R. M. Basnukaeva, S. V. Cherednichenko, A. V. Blyznyuk","doi":"10.1063/10.0021363","DOIUrl":"https://doi.org/10.1063/10.0021363","url":null,"abstract":"The effect of small impurities of reduced graphene oxide (rGO) on microhardness of polyethylene (PЕ) and polypropylene (PP) matrices and the reaction of these nanocomposites and initial polymers on the influence of localized load in the temperature range of 77–295 K were studied. When rGO was introduced, PE practically did not change its properties, whereas the introduction of 0.3 wt% rGO into the PP matrix was accompanied by a significant increase in microhardness, especially in the room temperature range (by approximately 70%). A transition to reversible deformation was detected when the indenter impressions applied in liquid and gaseous nitrogen at temperatures below the threshold (T < 174.5 K for PP and T < 226.5 K for nanocomposite PP + 0.3 wt% rGO) were not fixed on the surface of the samples after their heating in the measuring device to room temperature.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"32 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135565043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonlinear effects at the deformation of amorphous polymers in warm and frozen states","authors":"V. D. Natsik, H. V. Rusakova","doi":"10.1063/10.0021378","DOIUrl":"https://doi.org/10.1063/10.0021378","url":null,"abstract":"One of the important problems of the modern rheology of polymer materials, namely, the possibility of describing the deformation of amorphous polymers within the framework of linear rheological relationships between relative deformation and deforming stress or the need to use nonlinear rheological equations is considered. The criteria for distinguishing these approaches, namely, the determination of the corresponding critical values of the macro- and microphysical characteristics of the material and the conditions for carrying out the mechanical tests are also discussed. In particular, the difference between the influence of kinetic and thermodynamic nonlinear effects on the regularities of deformation processes of amorphous polymers in warm and frozen states was noted. The influence of nonlinear effects on the general shape and characteristics of individual stages of the “relative strain - deforming stress” diagram at deformation of polymer samples with specified values of strain rate and temperature is analyzed in detail. The results of the theoretical analysis were used for the physical interpretation of the general form and features of individual stages of the tensile test diagrams of amorphous polyimide films (V. D. Natsik, H. V. Rusakova, S. V. Lubenets, V. A. Lototskaya, and L. F. Yakovenko, Fiz. Nyzk. Temp. 49, 569 (2023) [Low Temp. Phys. 49, 521 (2023)]), empirical estimates for the rheological characteristics of this polymer were obtained.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. A. Moskalenko, A. R. Smirnov, R. V. Smolianets, Yu. M. Pohribna
{"title":"Creation of a heterogeneous grain structure is a condition for increasing the low-temperature ductility of nanocrystalline hcp metals","authors":"V. A. Moskalenko, A. R. Smirnov, R. V. Smolianets, Yu. M. Pohribna","doi":"10.1063/10.0021369","DOIUrl":"https://doi.org/10.1063/10.0021369","url":null,"abstract":"The paper considers the influence of a heterogeneous (bimodal) grain structure on the ductility characteristics of commercial purity titanium in a wide range of low temperatures (4.2–395 K) as a strategy for optimizing mechanical properties within the framework of the “strength–plasticity” ratio. Using titanium as an example, the physical mechanism for increasing the low-temperature ductility of hcp nanocrystalline metals with a heterogeneous grain size distribution is explained by a combination of several processes: an increase in the activity of intragrain dislocation slip, dynamic grain growth under tensile stresses, and activation of nanotwinning in submicron-sized grains.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"21 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modulated distribution of vacancies within the post-irradiated bcc metals","authors":"O. V. Oliinyk, V. A. Tatarenko","doi":"10.1063/10.0021366","DOIUrl":"https://doi.org/10.1063/10.0021366","url":null,"abstract":"The criterion of formation of a modulated structure by means of the spinodal mechanism in a spatial distribution of interacting vacancies (as strong concentrators of mechanical stresses) in metals as a target after irradiation is analyzed. For the irradiated body-centered cubic vanadium and tungsten, temperature dependences of the spatial periods of such a structure of the substitutional-vacancies’ subsystem are predicted taking into account the total mixing energies consisting of the energies of the (electro)chemical and strain-induced interactions between vacancies, which are cohesive by the nature in short distances and elastic by character at long distances, respectively.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"32 1-2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135565046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. P. Nerubatskyi, E. S. Gevorkyan, R. V. Vovk, Z. Krzysiak, Z. F. Nazyrov, O. M. Morozova, D. A. Hordiienko
{"title":"Peculiarities of obtaining nanocomposites with organic additives and consolidated nanomaterials with given properties","authors":"V. P. Nerubatskyi, E. S. Gevorkyan, R. V. Vovk, Z. Krzysiak, Z. F. Nazyrov, O. M. Morozova, D. A. Hordiienko","doi":"10.1063/10.0021375","DOIUrl":"https://doi.org/10.1063/10.0021375","url":null,"abstract":"The work presents the results of the creation of consolidated nanomaterials and composite ceramics using modern methods of consolidation of ceramic materials for the synthesis of powder precursors and specified phases that self-reinforce ceramic matrices. The method of mechanosynthesis and electroconsolidation is used. The results of the use of these trends for the creation of promising composite materials are given. The use of mechanochemical synthesis of β-SiC nanoparticles in nanoreactors, involving the organic-inorganic complex (–CH3)–(SiO2)n and the modification of refractory filler powders and carbon bonds using silicon alkoxide and related gels, has been demonstrated to enable the production of composite materials. These materials are composed of SiC, WC, and ZrO2, exhibiting a minimum bending strength of 650 MPa and crack resistance ranging from 6.5–7.9 MPa m0.5. Furthermore, this method can also produce periclase-carbon materials known for their exceptional resistance to oxidation and slag.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}