Nonlinear effects at the deformation of amorphous polymers in warm and frozen states

IF 0.6 4区 物理与天体物理 Q4 PHYSICS, APPLIED
V. D. Natsik, H. V. Rusakova
{"title":"Nonlinear effects at the deformation of amorphous polymers in warm and frozen states","authors":"V. D. Natsik, H. V. Rusakova","doi":"10.1063/10.0021378","DOIUrl":null,"url":null,"abstract":"One of the important problems of the modern rheology of polymer materials, namely, the possibility of describing the deformation of amorphous polymers within the framework of linear rheological relationships between relative deformation and deforming stress or the need to use nonlinear rheological equations is considered. The criteria for distinguishing these approaches, namely, the determination of the corresponding critical values of the macro- and microphysical characteristics of the material and the conditions for carrying out the mechanical tests are also discussed. In particular, the difference between the influence of kinetic and thermodynamic nonlinear effects on the regularities of deformation processes of amorphous polymers in warm and frozen states was noted. The influence of nonlinear effects on the general shape and characteristics of individual stages of the “relative strain - deforming stress” diagram at deformation of polymer samples with specified values of strain rate and temperature is analyzed in detail. The results of the theoretical analysis were used for the physical interpretation of the general form and features of individual stages of the tensile test diagrams of amorphous polyimide films (V. D. Natsik, H. V. Rusakova, S. V. Lubenets, V. A. Lototskaya, and L. F. Yakovenko, Fiz. Nyzk. Temp. 49, 569 (2023) [Low Temp. Phys. 49, 521 (2023)]), empirical estimates for the rheological characteristics of this polymer were obtained.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"23 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Low Temperature Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/10.0021378","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

One of the important problems of the modern rheology of polymer materials, namely, the possibility of describing the deformation of amorphous polymers within the framework of linear rheological relationships between relative deformation and deforming stress or the need to use nonlinear rheological equations is considered. The criteria for distinguishing these approaches, namely, the determination of the corresponding critical values of the macro- and microphysical characteristics of the material and the conditions for carrying out the mechanical tests are also discussed. In particular, the difference between the influence of kinetic and thermodynamic nonlinear effects on the regularities of deformation processes of amorphous polymers in warm and frozen states was noted. The influence of nonlinear effects on the general shape and characteristics of individual stages of the “relative strain - deforming stress” diagram at deformation of polymer samples with specified values of strain rate and temperature is analyzed in detail. The results of the theoretical analysis were used for the physical interpretation of the general form and features of individual stages of the tensile test diagrams of amorphous polyimide films (V. D. Natsik, H. V. Rusakova, S. V. Lubenets, V. A. Lototskaya, and L. F. Yakovenko, Fiz. Nyzk. Temp. 49, 569 (2023) [Low Temp. Phys. 49, 521 (2023)]), empirical estimates for the rheological characteristics of this polymer were obtained.
非晶态聚合物在高温和低温状态下变形的非线性效应
考虑了现代高分子材料流变学的一个重要问题,即在相对变形与变形应力之间的线性流变关系框架内描述非晶聚合物变形的可能性或使用非线性流变方程的必要性。还讨论了区分这些方法的标准,即确定材料的宏观和微观物理特性的相应临界值以及进行力学试验的条件。特别指出了动力学和热力学非线性效应对非晶聚合物在温暖和冷冻状态下变形过程规律的影响的区别。详细分析了在一定应变速率和温度条件下,非线性效应对聚合物试样变形时“相对应变-变形应力”图的总体形状和各阶段特征的影响。理论分析的结果被用于对非晶聚酰亚胺薄膜拉伸试验图的一般形式和各个阶段的特征的物理解释(V. D. Natsik, H. V. Rusakova, S. V. Lubenets, V. A. Lototskaya和L. F. Yakovenko, Fiz)。Nyzk。温度。49,569(2023)[低温。物理。49,521(2023)]),获得了该聚合物流变特性的经验估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Low Temperature Physics
Low Temperature Physics 物理-物理:应用
CiteScore
1.20
自引率
25.00%
发文量
138
审稿时长
3 months
期刊介绍: Guided by an international editorial board, Low Temperature Physics (LTP) communicates the results of important experimental and theoretical studies conducted at low temperatures. LTP offers key work in such areas as superconductivity, magnetism, lattice dynamics, quantum liquids and crystals, cryocrystals, low-dimensional and disordered systems, electronic properties of normal metals and alloys, and critical phenomena. The journal publishes original articles on new experimental and theoretical results as well as review articles, brief communications, memoirs, and biographies. Low Temperature Physics, a translation of the copyrighted Journal FIZIKA NIZKIKH TEMPERATUR, is a monthly journal containing English reports of current research in the field of the low temperature physics. The translation began with the 1975 issues. One volume is published annually beginning with the January issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信