Creation of a heterogeneous grain structure is a condition for increasing the low-temperature ductility of nanocrystalline hcp metals

IF 0.6 4区 物理与天体物理 Q4 PHYSICS, APPLIED
V. A. Moskalenko, A. R. Smirnov, R. V. Smolianets, Yu. M. Pohribna
{"title":"Creation of a heterogeneous grain structure is a condition for increasing the low-temperature ductility of nanocrystalline hcp metals","authors":"V. A. Moskalenko, A. R. Smirnov, R. V. Smolianets, Yu. M. Pohribna","doi":"10.1063/10.0021369","DOIUrl":null,"url":null,"abstract":"The paper considers the influence of a heterogeneous (bimodal) grain structure on the ductility characteristics of commercial purity titanium in a wide range of low temperatures (4.2–395 K) as a strategy for optimizing mechanical properties within the framework of the “strength–plasticity” ratio. Using titanium as an example, the physical mechanism for increasing the low-temperature ductility of hcp nanocrystalline metals with a heterogeneous grain size distribution is explained by a combination of several processes: an increase in the activity of intragrain dislocation slip, dynamic grain growth under tensile stresses, and activation of nanotwinning in submicron-sized grains.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"21 5","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Low Temperature Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/10.0021369","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The paper considers the influence of a heterogeneous (bimodal) grain structure on the ductility characteristics of commercial purity titanium in a wide range of low temperatures (4.2–395 K) as a strategy for optimizing mechanical properties within the framework of the “strength–plasticity” ratio. Using titanium as an example, the physical mechanism for increasing the low-temperature ductility of hcp nanocrystalline metals with a heterogeneous grain size distribution is explained by a combination of several processes: an increase in the activity of intragrain dislocation slip, dynamic grain growth under tensile stresses, and activation of nanotwinning in submicron-sized grains.
非均相晶粒结构的产生是提高纳米晶hcp金属低温延展性的条件
本文考虑了非均相(双峰)晶粒结构对商品纯钛在大范围低温(4.2-395 K)下的延性特性的影响,作为在“强度-塑性”比框架内优化力学性能的策略。以钛为例,分析了具有非均匀晶粒尺寸分布的hcp纳米晶金属低温延展性提高的物理机制,解释了几个过程的组合:晶内位错滑移活性的增加、拉应力下晶粒的动态生长和亚微米尺寸晶粒的纳米孪晶活化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Low Temperature Physics
Low Temperature Physics 物理-物理:应用
CiteScore
1.20
自引率
25.00%
发文量
138
审稿时长
3 months
期刊介绍: Guided by an international editorial board, Low Temperature Physics (LTP) communicates the results of important experimental and theoretical studies conducted at low temperatures. LTP offers key work in such areas as superconductivity, magnetism, lattice dynamics, quantum liquids and crystals, cryocrystals, low-dimensional and disordered systems, electronic properties of normal metals and alloys, and critical phenomena. The journal publishes original articles on new experimental and theoretical results as well as review articles, brief communications, memoirs, and biographies. Low Temperature Physics, a translation of the copyrighted Journal FIZIKA NIZKIKH TEMPERATUR, is a monthly journal containing English reports of current research in the field of the low temperature physics. The translation began with the 1975 issues. One volume is published annually beginning with the January issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信