Light-Science & Applications最新文献

筛选
英文 中文
On-chip graphene photodetectors with a nonvolatile p–i–n homojunction 具有非易失性p-i-n同质结的片上石墨烯光电探测器
Light-Science & Applications Pub Date : 2025-07-07 DOI: 10.1038/s41377-025-01832-y
Ruijuan Tian, Yong Zhang, Yingke Ji, Chen Li, Xianghu Wu, Jianguo Wang, Shuaiwei Jia, Liang Liu, Mingwen Zhang, Yu Zhang, Qiao Zhang, Zhuang Xie, Zhengdong Luo, Duorui Gao, Yan Liu, Jianlin Zhao, Zhipei Sun, Xuetao Gan
{"title":"On-chip graphene photodetectors with a nonvolatile p–i–n homojunction","authors":"Ruijuan Tian, Yong Zhang, Yingke Ji, Chen Li, Xianghu Wu, Jianguo Wang, Shuaiwei Jia, Liang Liu, Mingwen Zhang, Yu Zhang, Qiao Zhang, Zhuang Xie, Zhengdong Luo, Duorui Gao, Yan Liu, Jianlin Zhao, Zhipei Sun, Xuetao Gan","doi":"10.1038/s41377-025-01832-y","DOIUrl":"https://doi.org/10.1038/s41377-025-01832-y","url":null,"abstract":"<p>Graphene’s unique photothermoelectric (PTE) effect, combined with its compatibility for on-chip fabrication, promises its development in chip-integrated photodetectors with ultralow dark-current and ultrafast speed. Previous designs of on-chip graphene photodetectors required external electrical biases or gate voltages to separate photocarriers, leading to increased power consumption and complex circuitry. Here, we demonstrate a nonvolatile graphene <i>p–</i><i>i–</i><i>n</i> homojunction constructed on a silicon photonic crystal waveguide, which facilitates PTE-based photodetection without the need for electrical bias or gate voltages. By designing an air-slotted photonic crystal waveguide as two individual silicon back gates and employing ferroelectric dielectrics with remnant polarization fields, the nonvolatile <i>p</i>–<i>i</i>–<i>n</i> homojunction with a clear gradient of Seebeck coefficient is electrically configured. Hot carriers in the graphene channel generated from the absorption of waveguide evanescent field are separated by the nonvolatile <i>p–</i><i>i–</i><i>n</i> homojunction effectively to yield considerable photocurrents. With zero-bias and zero-gate voltage, the nonvolatile graphene <i>p</i>–<i>i</i>–<i>n</i> homojunction photodetector integrated on the optical waveguide exhibits high and flat responsivity of 193 mA W<sup>−1</sup> over the broadband wavelength range of 1560–1630 nm and an ultrafast dynamics bandwidth of 17 GHz measured in the limits of our instruments. With the high-performance on-chip photodetection, the nonvolatile graphene homojunction directly constructed on silicon photonic circuits promises the extended on-chip functions of the optoelectronic synapse, in-memory sensing and computing, and neuromorphic computing.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144568368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tunable metafibers: remote spatial focus control using 3D nanoprinted holograms on dual-core fibers 可调谐超纤维:远程空间聚焦控制使用3D纳米打印全息图在双芯光纤
Light-Science & Applications Pub Date : 2025-07-07 DOI: 10.1038/s41377-025-01903-0
Jun Sun, Wenqin Huang, Adrian Lorenz, Matthias Zeisberger, Markus A. Schmidt
{"title":"Tunable metafibers: remote spatial focus control using 3D nanoprinted holograms on dual-core fibers","authors":"Jun Sun, Wenqin Huang, Adrian Lorenz, Matthias Zeisberger, Markus A. Schmidt","doi":"10.1038/s41377-025-01903-0","DOIUrl":"https://doi.org/10.1038/s41377-025-01903-0","url":null,"abstract":"<p>The generation of tunably focused light at remote locations is a critical photonic functionality for a wide range of applications. Here, we present a novel concept in the emerging field of <i>Metafibers</i> that achieves, for the first time, fast, alignment-free, fiber-integrated spatial focus control in a monolithic arrangement. This is enabled by 3D nanoprinted intensity-sensitive phase-only on-fiber holograms, which establish a direct correlation between the intensity distribution in the hologram plane and the focus position. Precise adjustment to the relative power between the modes of a dual-core fiber generates a power-controlled interference pattern within the hologram, enabling controlled and dynamic focus shifts. This study addresses all relevant aspects, including computational optimization, advanced 3D nanoprinting, and tailored fiber fabrication. Experimental results supported by simulations validate the feasibility and efficiency of this monolithic <i>Metafiber</i> platform, which enables fast focus modulation and has transformative potential in optical manipulation, high-speed laser micromachining, telecommunications, and minimally invasive surgery.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144568364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrawideband high density polymer-based spherical array for real-time functional optoacoustic micro-angiography 用于实时功能光声微血管成像的超宽带高密度聚合物球形阵列
Light-Science & Applications Pub Date : 2025-07-07 DOI: 10.1038/s41377-025-01894-y
Pavel V. Subochev, Xosé Luís Deán-Ben, Zhenyue Chen, Maxim B. Prudnikov, Vladimir A. Vorobev, Alexey A. Kurnikov, Anna G. Orlova, Anna S. Postnikova, Alexey V. Kharitonov, Mikhail D. Proyavin, Roman I. Ovsyannikov, Anatoly G. Sanin, Mikhail Y. Kirillin, Francisco Montero de Espinosa, Ilya V. Turchin, Daniel Razansky
{"title":"Ultrawideband high density polymer-based spherical array for real-time functional optoacoustic micro-angiography","authors":"Pavel V. Subochev, Xosé Luís Deán-Ben, Zhenyue Chen, Maxim B. Prudnikov, Vladimir A. Vorobev, Alexey A. Kurnikov, Anna G. Orlova, Anna S. Postnikova, Alexey V. Kharitonov, Mikhail D. Proyavin, Roman I. Ovsyannikov, Anatoly G. Sanin, Mikhail Y. Kirillin, Francisco Montero de Espinosa, Ilya V. Turchin, Daniel Razansky","doi":"10.1038/s41377-025-01894-y","DOIUrl":"https://doi.org/10.1038/s41377-025-01894-y","url":null,"abstract":"<p>Owing to its unique ability to capture volumetric tomographic information with a single light flash, optoacoustic (OA) tomography has recently demonstrated ultrafast imaging speeds ultimately limited by the ultrasound time-of-flight. The method’s scalability and the achievable spatial resolution are yet limited by the narrow bandwidth of piezo-composite arrays currently employed for OA signal detection. Here we report on the first implementation of high-density spherical array technology based on flexible polyvinylidene difluoride films featuring ultrawideband (0.3–40 MHz) sub mm<sup>2</sup> area elements, thus enabling real-time multi-scale volumetric imaging with 22–35 µm spatial resolution, superior image fidelity and over an order of magnitude signal-to-noise enhancement compared to piezo-composite equivalents. We further demonstrate five-dimensional (spectroscopic, time-resolved, volumetric) imaging capabilities by visualizing fast stimulus-evoked cerebral oxygenation changes in mice and performing real-time functional angiography of deep human micro-vasculature. The new technology thus leverages the true potential of OA for quantitative high-resolution visualization of rapid bio-dynamics across scales.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144568366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Array detection enables large localization range for simple and robust MINFLUX 阵列检测可以实现简单而强大的MINFLUX的大定位范围
Light-Science & Applications Pub Date : 2025-07-03 DOI: 10.1038/s41377-025-01883-1
Eli Slenders, Sanket Patil, Marcus Oliver Held, Alessandro Zunino, Giuseppe Vicidomini
{"title":"Array detection enables large localization range for simple and robust MINFLUX","authors":"Eli Slenders, Sanket Patil, Marcus Oliver Held, Alessandro Zunino, Giuseppe Vicidomini","doi":"10.1038/s41377-025-01883-1","DOIUrl":"https://doi.org/10.1038/s41377-025-01883-1","url":null,"abstract":"<p>The MINFLUX concept significantly improves the localization properties of single-molecule localization microscopy (SMLM) by overcoming the limit imposed by the fluorophore’s photon counts. Typical MINFLUX microscopes localize the target molecule by scanning a zero-intensity focus around the molecule in a circular trajectory, with smaller trajectory diameters yielding better localization uncertainties for a given number of photons. Since this approach requires the molecule to be within the scanned trajectory, MINFLUX typically relies on an iterative scheme with decreasing trajectory diameters. This iterative approach is prone to misplacements of the trajectory and increases the system’s complexity. In this work, we introduce ISM-FLUX, a novel implementation of MINFLUX using image-scanning microscopy (ISM) with a single-photon avalanche diode array detector. ISM-FLUX provides a precise MINFLUX localization within the trajectory while maintaining a conventional photon-limited uncertainty outside it. The robustness of ISM-FLUX localization results in a larger localization range and greatly simplifies the architecture, which may facilitate broader adoption of MINFLUX.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144546920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light People: Prof. Lei Zhou spoke about metasurfaces 光人:周磊教授谈到了超表面
Light-Science & Applications Pub Date : 2025-07-02 DOI: 10.1038/s41377-025-01893-z
Chenzi Guo
{"title":"Light People: Prof. Lei Zhou spoke about metasurfaces","authors":"Chenzi Guo","doi":"10.1038/s41377-025-01893-z","DOIUrl":"https://doi.org/10.1038/s41377-025-01893-z","url":null,"abstract":"<p>Prof. Lei Zhou is a leading figure in metamaterials and metasurfaces. His pioneering works on developing gradient-index metasurfaces and utilizing ultrathin anisotropic materials for polarization control have co-shaped the foundational framework of metasurfaces. In addition to his research achievements, Prof. Zhou serves as Vice President of Fudan University - one of China’s most prominent universities - and was recently appointed as the Head of Fudan’s College of Future Information Technology. With such roles, he’s been deeply involved in many strategic initiatives and policies that contribute to the well-being of the scientific community. To shed light on the above, <i>Light: Science &amp; Applications</i> invited Prof. Lei Zhou for an in-depth conversation.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144533277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From genotype to phenotype: decoding mutations in blasts by holo-tomographic flow cytometry 从基因型到表型:用全息层析流式细胞术解码突变
Light-Science & Applications Pub Date : 2025-07-02 DOI: 10.1038/s41377-025-01913-y
Daniele Pirone, Concetta Di Natale, Maria Di Summa, Nicola Mosca, Giusy Giugliano, Michela Schiavo, Daniele Florio, Daniela Marasco, Pier Luca Maffettone, Lisa Miccio, Pasquale Memmolo, Pietro Ferraro
{"title":"From genotype to phenotype: decoding mutations in blasts by holo-tomographic flow cytometry","authors":"Daniele Pirone, Concetta Di Natale, Maria Di Summa, Nicola Mosca, Giusy Giugliano, Michela Schiavo, Daniele Florio, Daniela Marasco, Pier Luca Maffettone, Lisa Miccio, Pasquale Memmolo, Pietro Ferraro","doi":"10.1038/s41377-025-01913-y","DOIUrl":"https://doi.org/10.1038/s41377-025-01913-y","url":null,"abstract":"<p>Cup-like nuclear morphological alterations in acute myeloid leukemia (AML) blasts have been widely correlated with Nucleophosmin 1 (NPM1) mutations. NPM1-mutated AML has earned recognition as a distinct entity among myeloid tumors, but the absence of a thoroughly established tool for its morphological analysis remains a notable gap. Holographic tomography (HT) can offer a label-free solution for quantitatively assessing the 3D shape of the nucleus based on the volumetric variations of its refractive indices (RIs). However, traditional HT methods analyze adherent cells in a 2D layer, leading to non-isotropic reconstructions due to missing cone artifacts. Here we show for the first time that holo-tomographic flow cytometry (HTFC) achieves quantitative specificity and precise capture of the nucleus volumetric shape in AML cells in suspension. To retrieve nucleus specificity in label-free RI tomograms of flowing AML cells, we conceive and demonstrate in a real-world clinical case a novel strategy for segmenting 3D concave nuclei. This method implies that the correlation between the “phenotype” and “genotype” of nuclei is demonstrated through HTFC by creating a challenging link not yet explored between the aberrant morphological features of AML nuclei and NPM1 mutations. We conduct an ensemble-level statistical characterization of NPM1-wild type and NPM1-mutated blasts to discern their complex morphological and biophysical variances. Our findings suggest that characterizing cup-like nuclei in NPM1-related AML cells by HTFC may enhance the diagnostic approach for these tumors. Furthermore, we integrate virtual reality to provide an immersive fruition of morphological changes in AML cells within a true 3D environment.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144532960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near-infrared light activatable chemically induced CRISPR system 近红外光可激活化学诱导CRISPR系统
Light-Science & Applications Pub Date : 2025-07-01 DOI: 10.1038/s41377-025-01917-8
Lei Zhang, Xuejun Zhang, Le Qiu, Song Mao, Jia Sheng, Liming Chen, Umar Khan, Paul K. Upputuri, Yuri N. Zakharov, Mark F. Coughlan, Lev T. Perelman
{"title":"Near-infrared light activatable chemically induced CRISPR system","authors":"Lei Zhang, Xuejun Zhang, Le Qiu, Song Mao, Jia Sheng, Liming Chen, Umar Khan, Paul K. Upputuri, Yuri N. Zakharov, Mark F. Coughlan, Lev T. Perelman","doi":"10.1038/s41377-025-01917-8","DOIUrl":"https://doi.org/10.1038/s41377-025-01917-8","url":null,"abstract":"<p>The biggest challenge in using CRISPR technologies, which limits their widespread application in medicine, is off-target effects. These effects could, in principle, be minimized by ensuring that CRISPR is activated primarily in the targeted cells, thereby reducing the likelihood of unintended genetic modifications in non-target tissues. Therefore, the development of a light activatable CRISPR approach to dynamically control gene activation in both space and time would be highly beneficial. A drawback is that the overwhelming majority of recently introduced light activatable CRISPR systems require UV or blue light exposure, severely limiting the penetration depth of light in tissue at which CRISPR can be activated, and, in the case of UV light, raising safety concerns. A small number of systems that activate CRISPR using longer wavelengths are hindered by either slow light activation or issues related to toxicity and biocompatibility of the proposed techniques in humans. To address this, we developed a split-Cas9/dCas9 system in which activation is achieved through a near-infrared photocleavable dimerization complex. This photoactivation method can be safely used in humans in vivo, easily adapted to different split-Cas9/dCas9 systems, and enables rapid, spatially precise light activation across various cell types.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144520423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All-on-chip reconfigurable generation of scalar and vectorial orbital angular momentum beams 全片可重构生成标量和矢量轨道角动量光束
Light-Science & Applications Pub Date : 2025-06-30 DOI: 10.1038/s41377-025-01899-7
Weike Zhao, Xiaolin Yi, Jieshan Huang, Ruoran Liu, Jianwei Wang, Yaocheng Shi, Yungui Ma, Andrew Forbes, Daoxin Dai
{"title":"All-on-chip reconfigurable generation of scalar and vectorial orbital angular momentum beams","authors":"Weike Zhao, Xiaolin Yi, Jieshan Huang, Ruoran Liu, Jianwei Wang, Yaocheng Shi, Yungui Ma, Andrew Forbes, Daoxin Dai","doi":"10.1038/s41377-025-01899-7","DOIUrl":"https://doi.org/10.1038/s41377-025-01899-7","url":null,"abstract":"<p>Structured light carrying angular momentum, such as spin angular momentum (SAM) and orbital angular momentum (OAM), has been at the core of new science and applications, driving the need for compact on-chip sources. While many static on-chip solutions have been demonstrated, as well as on-chip sources of free-space modes, no architecture that is fully reconfigurable in all angular momentum states and all on-chip has so far been possible. Here we report the first all-on-chip structured light generator for the creation of both scalar and vectorial angular momentum beams, facilitated through a silicon-on-insulator (SOI) chip with a silica mode multiplexer (silica chip). We selectively stimulate six linearly-polarized (LP) modes of the silica multimode bus waveguide, precisely controlling the modal powers and phases with the SOI chip. This allows us to tailor arbitrary superpositions of the mode set thus synthesizing common cylindrical vector vortex beams as well as OAM beams of controlled spin and topological charge. Our compact structured light generator exhibits high switching speed and operates across the telecom band, paving the way for applications such as optical communication and integrated quantum technologies.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144515577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase-pure ferroelectric quantum wells with tunable photoluminescence for multi-state optoelectronic applications 多态光电应用中具有可调谐光致发光的纯相铁电量子阱
Light-Science & Applications Pub Date : 2025-06-30 DOI: 10.1038/s41377-025-01874-2
Rui Sun, Yuping Jia, Bo Lai, Zhiming Shi, Mingrui Liu, Weili Yu, Ke Jiang, Shanli Zhang, Shunpeng Lv, Yang Chen, Xiaojuan Sun, Dabing Li
{"title":"Phase-pure ferroelectric quantum wells with tunable photoluminescence for multi-state optoelectronic applications","authors":"Rui Sun, Yuping Jia, Bo Lai, Zhiming Shi, Mingrui Liu, Weili Yu, Ke Jiang, Shanli Zhang, Shunpeng Lv, Yang Chen, Xiaojuan Sun, Dabing Li","doi":"10.1038/s41377-025-01874-2","DOIUrl":"https://doi.org/10.1038/s41377-025-01874-2","url":null,"abstract":"<p>Quasi-two-dimensional (quasi-2D) metal halide perovskite (MHP) ferroelectrics, characterized by spontaneous polarization and semiconducting properties, hold promise for functional photoferroelectrics in applications such as optical storage and in-memory computing. However, typical quasi-2D perovskite films contain multiple quantum wells with random width distribution, which degrade optoelectronic properties and spontaneous polarization. Here, we introduce phase-pure quantum wells with uniform well width by incorporating the inorganic salt MnBr<sub>2</sub>, which effectively controls crystallization kinetics and restricts the nucleation of high n-phases, producing high-quality films. The resulting (BA)<sub>2</sub>CsPb<sub>2</sub>Br<sub>7</sub> (BA = C<sub>4</sub>H<sub>9</sub>NH<sub>3</sub>) film demonstrates ferroelectric hysteresis behavior, clear in-plane ferroelectric domain switching, and a high photoluminescence quantum efficiency (PLQE) of 88.7%. Significantly, we observed a nonvolatile, reversible in situ photoluminescence (PL) modulation of Mn<sup>2+</sup> in this ferroelectric MHP film under an applied electric field, attributed to lattice distortion from ferroelectric polarization orientation. These findings enabled the development of a simple system comprising gallium nitride (GaN) light emitting diodes (LEDs) and ferroelectric films to implement multi-state signal encoding and a logic AND gate. This work advances the fabrication of efficient ferroelectric MHP films and highlights their potential for advanced optoelectronic applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144515569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of dispersion-engineered metasurfaces: Debye relaxation and folded path concept 色散工程超表面的演化:德拜松弛和折叠路径概念
Light-Science & Applications Pub Date : 2025-06-24 DOI: 10.1038/s41377-025-01890-2
Hammad Ahmed, Buxiong Qi, Xianzhong Chen
{"title":"Evolution of dispersion-engineered metasurfaces: Debye relaxation and folded path concept","authors":"Hammad Ahmed, Buxiong Qi, Xianzhong Chen","doi":"10.1038/s41377-025-01890-2","DOIUrl":"https://doi.org/10.1038/s41377-025-01890-2","url":null,"abstract":"<p>Dispersion engineering is advancing with recent breakthroughs in metasurfaces using the 2nd-order Debye relaxation and the folded-path concept, greatly improving relevant applications such as imaging, beam shaping, and cloaking.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144371051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信