Amandine Jullienne , Mackenzie Malo , Keely Shaw , Yuwen Zheng , James D Johnston , Saija Kontulainen , Philip D Chilibeck , Ekaterina Dadachova , Andre Obenaus , Gordon E Sarty
{"title":"Musculoskeletal perturbations of deep space radiation: Assessment using a Gateway MRI","authors":"Amandine Jullienne , Mackenzie Malo , Keely Shaw , Yuwen Zheng , James D Johnston , Saija Kontulainen , Philip D Chilibeck , Ekaterina Dadachova , Andre Obenaus , Gordon E Sarty","doi":"10.1016/j.lssr.2024.05.004","DOIUrl":"https://doi.org/10.1016/j.lssr.2024.05.004","url":null,"abstract":"<div><p>Human space exploration expansion from Low-Earth Orbit to deep space is accelerating the need to monitor and address the known health concerns related to deep space radiation. The human musculoskeletal system is vulnerable to these risks (alongside microgravity) and its health reflects the well-being of other body systems. Multiparametric magnetic resonance imaging (MRI) is an important approach for assessing temporal physiological changes in the musculoskeletal system. We propose that ultra-low-field MRI provides an optimal low Size Weight and Power (SwaP) solution for non-invasively monitoring muscle and bone changes on the planned <em>Gateway</em> lunar space station. Our proposed ultra-low-field <em>Gateway</em> MRI meets low SWaP design specifications mandated by limited room in the lunar space station. This review summarizes the current state of our knowledge on musculoskeletal consequences of spaceflight, especially with respect to radiation, and then elaborates how MRI can be used to monitor the deleterious effects of space travel and the efficacy of putative countermeasures. We argue that an ultra-low-field MRI in cis-lunar space on the <em>Gateway</em> can provide valuable research and medical insights into the effects of deep space radiation exposure on astronauts. Such an MRI would also allow the development of imaging protocols that would facilitate Earth-bound teams to monitor space personnel musculoskeletal changes during future interplanetary spaceflight. It will especially have a role in monitoring countermeasures, such as the use of melanin, in protecting space explorers.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 74-83"},"PeriodicalIF":2.5,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214552424000622/pdfft?md5=b38630656a44bcac5211b1afe69c3ee9&pid=1-s2.0-S2214552424000622-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141241394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A polymerase chain reaction experiment using Escherichia coli and Mars sand simulant for detection and analysis of extraterrestrial life","authors":"Keigo Enya , Satoshi Sasaki , Taiki Kunieda","doi":"10.1016/j.lssr.2024.05.003","DOIUrl":"10.1016/j.lssr.2024.05.003","url":null,"abstract":"<div><p>In this study, we conducted polymerase chain reaction (PCR) experiments using <em>Escherichia coli</em> (<em>E. coli</em>) and a Mars sand simulant (Mars Global Simulant MGS-1, Exolith Lab) to detect and analyze potential extraterrestrial life. The targeted DNA sequence is common among the bacterial kingdom on Earth. PCR experiments conducted after alkaline heat extraction, wherein samples with varying amounts of Mars sand simulant were compared, revealed that the simulant interfered with DNA detection. We then conducted PCR experiments following treatment with a sand DNA extraction kit on samples with various <em>E. coli</em> densities. DNA bands for a minimum <em>E. coli</em> density of 900 cells/(g sand) were confirmed, while no DNA bands were visible in the 90 cells/(g sand) sample with and without the Mars sand simulant. The total DNA mass contained in 900 cells was calculated to be 15.3 pg (i.e., 1.53 pg in 0.1 g sand sample we evaluated). We tested and compared the influence of the eluate of Mars sand simulant and DNA adsorption onto Mars sand simulant based on optical absorbance measurements. Our findings suggest that the mechanism by which the Mars sand simulant prevents PCR is through the adsorption of DNA onto the Mars sand simulant.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 84-90"},"PeriodicalIF":2.5,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214552424000610/pdfft?md5=636150b80cc1f7b27f024fbfc6c2710a&pid=1-s2.0-S2214552424000610-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141143655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coordinated lunar time (LTC): Implications of a lunar-centric time zone on astronaut health and space medicine","authors":"Ethan Waisberg , Joshua Ong , Andrew G. Lee","doi":"10.1016/j.lssr.2024.05.002","DOIUrl":"10.1016/j.lssr.2024.05.002","url":null,"abstract":"<div><p>Lunar exploration offers an exciting opportunity for humanity to advance scientific knowledge and future potential economic growth and possibly allow humans to become a multi-planetary species. On April 2, 2024 the US Office of Science and Technology Policy released a memorandum outlining the current Biden-Harris Administration's policy on the need to establish time standards at celestial bodies other than Earth. This memorandum also introduced the need for Coordinated Lunar Time (CLT), the concept of having a reference time for the moon. The establishment of CLT would provide a multitude of benefits for astronaut health, from expedition planning, to maintaining a sense of order in an austere environment. International agreements and collaboration will be required prior to the recognition of CLT.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 72-73"},"PeriodicalIF":2.5,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141057174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Senthil Kumar Hariom, Everette Jacob Remington Nelson
{"title":"Cardiovascular adaptations in microgravity conditions","authors":"Senthil Kumar Hariom, Everette Jacob Remington Nelson","doi":"10.1016/j.lssr.2024.05.001","DOIUrl":"https://doi.org/10.1016/j.lssr.2024.05.001","url":null,"abstract":"<div><p>Gravity has had a significant impact on the evolution of life on Earth with organisms developing necessary biological adaptations over billions of years to counter this ever-existing force. There has been an exponential increase in experiments using real and simulated gravity environments in the recent years. Although an understanding followed by discovery of counter measures to negate diminished gravity in space had been the driving force of research initially, there has since been a phenomenal leap wherein a force unearthly as microgravity is beginning to show promising potential. The current review summarizes pathophysiological changes that occur in multiple aspects of the cardiovascular system when exposed to an altered gravity environment leading to cardiovascular deconditioning and orthostatic intolerance. Gravity influences not just the complex multicellular systems but even the survival of organisms at the molecular level by intervening fundamental cellular processes, directly affecting those linked to actin and microtubule organization <em>via</em> mechano-transduction pathways. The reach of gravity ranges from cytoskeletal rearrangement that regulates cell adhesion and migration to intracellular dynamics that dictate cell fate commitment and differentiation. An understanding that microgravity itself is not present on Earth propels the scope of simulated gravity conditions to be a unique and useful environment that could be explored for enhancing the potential of stem cells for a wide range of applications as has been highlighted here.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 64-71"},"PeriodicalIF":2.5,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140950599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hamza Memon , Joshua Ong , Ethan Waisberg , Nicholas Panzo , Prithul Sarker , Nasif Zaman , Alireza Tavakkoli , Andrew G. Lee
{"title":"Biophysics of ophthalmic medications during spaceflight: Principles of ocular fluid dynamics and pharmacokinetics in microgravity","authors":"Hamza Memon , Joshua Ong , Ethan Waisberg , Nicholas Panzo , Prithul Sarker , Nasif Zaman , Alireza Tavakkoli , Andrew G. Lee","doi":"10.1016/j.lssr.2024.04.007","DOIUrl":"https://doi.org/10.1016/j.lssr.2024.04.007","url":null,"abstract":"<div><p>As spaceflight becomes increasingly accessible and expansive to humanity, it is becoming ever more essential to consider the treatment of various eye diseases in these challenging environments. This paper delves into the increasing fascination with interplanetary travel and its implications for health management in varying environments. It specifically discusses the pharmacological management of ocular diseases, focusing on two key delivery methods: topical eye drops and intravitreal injections. The paper explores how microgravity impacts the administration of these treatments, a vital aspect in understanding drug delivery in space. An extensive analysis is presented on the pharmacokinetics of eye medications, examining the interaction between pharmaceuticals and ocular tissues in zero gravity. The goal of the paper is to bridge the understanding of fluid dynamics, microgravity and the human physiological systems to pave the way for innovative solutions faced by individuals in microgravity.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 53-61"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140894625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In Memoriam","authors":"","doi":"10.1016/j.lssr.2024.04.006","DOIUrl":"https://doi.org/10.1016/j.lssr.2024.04.006","url":null,"abstract":"","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 62-63"},"PeriodicalIF":2.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140947428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chaoxian Jia , Weibo Zheng , Fangwu Liu , Kun Ding , Yongchun Yuan , Junjun Wang , Dazhao Xu , Tao Zhang , Huiqiong Zheng
{"title":"Biological culture module for plant research from seed-to-seed on the Chinese Space Station","authors":"Chaoxian Jia , Weibo Zheng , Fangwu Liu , Kun Ding , Yongchun Yuan , Junjun Wang , Dazhao Xu , Tao Zhang , Huiqiong Zheng","doi":"10.1016/j.lssr.2024.04.005","DOIUrl":"10.1016/j.lssr.2024.04.005","url":null,"abstract":"<div><p>The long-term cultivation of higher plants in space plays a substantial role in investigating the effects of microgravity on plant growth and development, acquiring valuable insights for developing a self-sustaining space life supporting system. The completion of the Chinese Space Station (CSS) provides us with a new permanent space experimental platform for long-term plant research in space. Biological Culture Module (GBCM), which was installed in the Wentian experimental Module of the CSS, was constructed with the objective of growing <em>Arabidopsis thaliana</em> and rice plants a full life cycle in space. The techniques of LED light control, gas regulation and water recovery have been developed for GBCM in which dry seeds of Arabidopsis and rice were set in root module of four culture chambers (CCs) and launched with Wentian module on July 24, 2022. These seeds were watered and germinated from July 28 and grew new seeds until November 26 within a duration of 120 days. To this end, both Arabidopsis and rice plants completed a full life cycle in microgravity on the CSS. As we know, this is the first space experiment achieving rice complete life cycle from seed-to-seed in space. This result demonstrates the possibility to cultivate the important food crop rice throughout its entire life cycle under the spaceflight environment and the technologies of GBCM have effectively supported the success of long-term plant culture experiments in space. These results can serve as invaluable references for constructing more expansive and intricate space plant cultivation systems in the future.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 47-52"},"PeriodicalIF":2.5,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140789092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alex Suh , Joshua Ong , Ethan Waisberg , Andrew G. Lee
{"title":"Neurostimulation as a technology countermeasure for dry eye syndrome in astronauts","authors":"Alex Suh , Joshua Ong , Ethan Waisberg , Andrew G. Lee","doi":"10.1016/j.lssr.2024.04.003","DOIUrl":"https://doi.org/10.1016/j.lssr.2024.04.003","url":null,"abstract":"<div><p>Dry eye syndrome (DES) poses a significant challenge for astronauts during space missions, with reports indicating up to 30% of International Space Station (ISS) crew members. The microgravity environment of space alters fluid dynamics, affecting distribution of fluids on the surface of the eye as well as inducing cephalad fluid shifts that can alter tear drainage. Chronic and persistent DES not only impairs visual function, but also compromises the removal of debris, a heightened risk for corneal abrasions in the microgravity environment. Despite the availability of artificial tears on the ISS, the efficacy is challenged by altered fluid dynamics within the bottle and risks of contamination, thereby exacerbating the potential for corneal abrasions. In light of these challenges, there is a pressing need for innovative approaches to address DES in astronauts. Neurostimulation has emerged as a promising technology countermeasure for DES in spaceflight. By leveraging electrical signals to modulate neural function, neurostimulation offers a novel therapeutic avenue for managing DES symptoms. In this paper, we will explore the risk factors and current treatment modalities for DES, highlighting the limitations of existing approaches. Furthermore, we will delve into the novelty and potential of neurostimulation as a countermeasure for DES in future long-duration missions, including those to the Moon and Mars.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 37-39"},"PeriodicalIF":2.5,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214552424000385/pdfft?md5=a8a26aa6801db7602c2f0dcb08c675aa&pid=1-s2.0-S2214552424000385-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140622381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin Soares , Joshua Ong , Ethan Waisberg , Prithul Sarker , Nasif Zaman , Alireza Tavakkoli , Andrew G. Lee
{"title":"Imaging in spaceflight associated neuro-ocular syndrome (SANS): Current technology and future directions in modalities","authors":"Benjamin Soares , Joshua Ong , Ethan Waisberg , Prithul Sarker , Nasif Zaman , Alireza Tavakkoli , Andrew G. Lee","doi":"10.1016/j.lssr.2024.04.004","DOIUrl":"https://doi.org/10.1016/j.lssr.2024.04.004","url":null,"abstract":"<div><p>With plans for future long-duration crewed exploration, NASA has identified several high priority potential health risks to astronauts in space. One such risk is a collection of neurologic and ophthalmic findings termed spaceflight associated neuro-ocular syndrome (SANS). The findings of SANS include optic disc edema, globe flattening, retinal nerve fiber layer thickening, chorioretinal folds, hyperopic shifts, and cotton-wool spots. The cause of SANS was initially thought to be a cephalad fluid shift in microgravity leading to increased intracranial pressure, venous stasis and impaired CSF outflow, but the precise etiology of SANS remains ill defined.</p><p>Recent studies have explored multiple possible pathogenic mechanisms for SANS including genetic and hormonal factors; a cephalad shift of fluid into the orbit and brain in microgravity; and disruption to the brain glymphatic system. Orbital, ocular, and cranial imaging, both on Earth and in space has been critical in the diagnosis and monitoring of SANS (e.g., fundus photography, optical coherence tomography (OCT), magnetic resonance imaging (MRI), and orbital/cranial ultrasound). In addition, we highlight near-infrared spectroscopy and diffusion tensor imaging, two newer modalities with potential use in future studies of SANS. In this manuscript we provide a review of these modalities, outline their current and potential use in space and on Earth, and review the reported major imaging findings in SANS.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 40-46"},"PeriodicalIF":2.5,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140650161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Suppression of essential oil biosynthesis in sweet basil cotyledons under hypergravity conditions","authors":"Yu Watanabe , Hana Yamamoto , Ikumi Shimizu , Hiroki Hongo , Arisa Noguchi , Nobuharu Fujii , Takayuki Hoson , Kazuyuki Wakabayashi , Kouichi Soga","doi":"10.1016/j.lssr.2024.04.002","DOIUrl":"https://doi.org/10.1016/j.lssr.2024.04.002","url":null,"abstract":"<div><p>The mechanism through which gravity influences the biosynthesis of essential oils in herbs is an important issue for plant and space biology. Sweet basil (<em>Ocimum basilicum</em> L.) seedlings were cultivated under centrifugal hypergravity conditions at 100 <em>g</em> in the light, and the growth of cotyledons, development of glandular hairs, and biosynthesis of essential oils were analyzed. The area and fresh weight of the cotyledons increased by similar amounts irrespective of the gravitational conditions. On the abaxial surface of the cotyledons, glandular hairs, where essential oils are synthesized and stored, developed from those with single-cell heads to those with four-cell heads; however, hypergravity did not affect this development. The main components, methyl eugenol and 1,8-cineole, in the essential oils of cotyledons were lower in cotyledons grown under hypergravity conditions. The gene expression of enzymes in the phenylpropanoid pathway involved in the synthesis of methyl eugenol, such as phenylalanine ammonia lyase (PAL) and eugenol <em>O</em>-methyltransferase (EOMT), was downregulated by hypergravity. Hypergravity also decreased the gene expression of enzymes in the 2C-methyl-d-erythritol 4-phosphate (MEP) pathway involved in the synthesis of 1,8-cineole, such as 1-deoxy-d-xylulose-5-phosphate synthase (DXS) and 1,8-cineole synthase (CINS). These results indicate that hypergravity without affecting the development of glandular hairs, decreases the expression of genes related to the biosynthesis of methyl eugenol and 1,8-cineole, which may cause a decrease in the amounts of both essential oils in sweet basil cotyledons.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 1-7"},"PeriodicalIF":2.5,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140618279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}