Life Sciences in Space Research最新文献

筛选
英文 中文
Coordinated lunar time (LTC): Implications of a lunar-centric time zone on astronaut health and space medicine 协调月球时间(LTC):以月球为中心的时区对宇航员健康和空间医学的影响
IF 2.5 3区 生物学
Life Sciences in Space Research Pub Date : 2024-05-16 DOI: 10.1016/j.lssr.2024.05.002
Ethan Waisberg , Joshua Ong , Andrew G. Lee
{"title":"Coordinated lunar time (LTC): Implications of a lunar-centric time zone on astronaut health and space medicine","authors":"Ethan Waisberg ,&nbsp;Joshua Ong ,&nbsp;Andrew G. Lee","doi":"10.1016/j.lssr.2024.05.002","DOIUrl":"10.1016/j.lssr.2024.05.002","url":null,"abstract":"<div><p>Lunar exploration offers an exciting opportunity for humanity to advance scientific knowledge and future potential economic growth and possibly allow humans to become a multi-planetary species. On April 2, 2024 the US Office of Science and Technology Policy released a memorandum outlining the current Biden-Harris Administration's policy on the need to establish time standards at celestial bodies other than Earth. This memorandum also introduced the need for Coordinated Lunar Time (CLT), the concept of having a reference time for the moon. The establishment of CLT would provide a multitude of benefits for astronaut health, from expedition planning, to maintaining a sense of order in an austere environment. International agreements and collaboration will be required prior to the recognition of CLT.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 72-73"},"PeriodicalIF":2.5,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141057174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardiovascular adaptations in microgravity conditions 微重力条件下的心血管适应性
IF 2.5 3区 生物学
Life Sciences in Space Research Pub Date : 2024-05-15 DOI: 10.1016/j.lssr.2024.05.001
Senthil Kumar Hariom, Everette Jacob Remington Nelson
{"title":"Cardiovascular adaptations in microgravity conditions","authors":"Senthil Kumar Hariom,&nbsp;Everette Jacob Remington Nelson","doi":"10.1016/j.lssr.2024.05.001","DOIUrl":"https://doi.org/10.1016/j.lssr.2024.05.001","url":null,"abstract":"<div><p>Gravity has had a significant impact on the evolution of life on Earth with organisms developing necessary biological adaptations over billions of years to counter this ever-existing force. There has been an exponential increase in experiments using real and simulated gravity environments in the recent years. Although an understanding followed by discovery of counter measures to negate diminished gravity in space had been the driving force of research initially, there has since been a phenomenal leap wherein a force unearthly as microgravity is beginning to show promising potential. The current review summarizes pathophysiological changes that occur in multiple aspects of the cardiovascular system when exposed to an altered gravity environment leading to cardiovascular deconditioning and orthostatic intolerance. Gravity influences not just the complex multicellular systems but even the survival of organisms at the molecular level by intervening fundamental cellular processes, directly affecting those linked to actin and microtubule organization <em>via</em> mechano-transduction pathways. The reach of gravity ranges from cytoskeletal rearrangement that regulates cell adhesion and migration to intracellular dynamics that dictate cell fate commitment and differentiation. An understanding that microgravity itself is not present on Earth propels the scope of simulated gravity conditions to be a unique and useful environment that could be explored for enhancing the potential of stem cells for a wide range of applications as has been highlighted here.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 64-71"},"PeriodicalIF":2.5,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140950599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biophysics of ophthalmic medications during spaceflight: Principles of ocular fluid dynamics and pharmacokinetics in microgravity 太空飞行期间眼科药物的生物物理学:微重力条件下的眼液动力学和药代动力学原理
IF 2.5 3区 生物学
Life Sciences in Space Research Pub Date : 2024-05-01 DOI: 10.1016/j.lssr.2024.04.007
Hamza Memon , Joshua Ong , Ethan Waisberg , Nicholas Panzo , Prithul Sarker , Nasif Zaman , Alireza Tavakkoli , Andrew G. Lee
{"title":"Biophysics of ophthalmic medications during spaceflight: Principles of ocular fluid dynamics and pharmacokinetics in microgravity","authors":"Hamza Memon ,&nbsp;Joshua Ong ,&nbsp;Ethan Waisberg ,&nbsp;Nicholas Panzo ,&nbsp;Prithul Sarker ,&nbsp;Nasif Zaman ,&nbsp;Alireza Tavakkoli ,&nbsp;Andrew G. Lee","doi":"10.1016/j.lssr.2024.04.007","DOIUrl":"https://doi.org/10.1016/j.lssr.2024.04.007","url":null,"abstract":"<div><p>As spaceflight becomes increasingly accessible and expansive to humanity, it is becoming ever more essential to consider the treatment of various eye diseases in these challenging environments. This paper delves into the increasing fascination with interplanetary travel and its implications for health management in varying environments. It specifically discusses the pharmacological management of ocular diseases, focusing on two key delivery methods: topical eye drops and intravitreal injections. The paper explores how microgravity impacts the administration of these treatments, a vital aspect in understanding drug delivery in space. An extensive analysis is presented on the pharmacokinetics of eye medications, examining the interaction between pharmaceuticals and ocular tissues in zero gravity. The goal of the paper is to bridge the understanding of fluid dynamics, microgravity and the human physiological systems to pave the way for innovative solutions faced by individuals in microgravity.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 53-61"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140894625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Memoriam 悼念
IF 2.5 3区 生物学
Life Sciences in Space Research Pub Date : 2024-04-25 DOI: 10.1016/j.lssr.2024.04.006
{"title":"In Memoriam","authors":"","doi":"10.1016/j.lssr.2024.04.006","DOIUrl":"https://doi.org/10.1016/j.lssr.2024.04.006","url":null,"abstract":"","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 62-63"},"PeriodicalIF":2.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140947428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological culture module for plant research from seed-to-seed on the Chinese Space Station 在中国空间站上进行从种子到种子的植物研究的生物培养舱
IF 2.5 3区 生物学
Life Sciences in Space Research Pub Date : 2024-04-24 DOI: 10.1016/j.lssr.2024.04.005
Chaoxian Jia , Weibo Zheng , Fangwu Liu , Kun Ding , Yongchun Yuan , Junjun Wang , Dazhao Xu , Tao Zhang , Huiqiong Zheng
{"title":"Biological culture module for plant research from seed-to-seed on the Chinese Space Station","authors":"Chaoxian Jia ,&nbsp;Weibo Zheng ,&nbsp;Fangwu Liu ,&nbsp;Kun Ding ,&nbsp;Yongchun Yuan ,&nbsp;Junjun Wang ,&nbsp;Dazhao Xu ,&nbsp;Tao Zhang ,&nbsp;Huiqiong Zheng","doi":"10.1016/j.lssr.2024.04.005","DOIUrl":"10.1016/j.lssr.2024.04.005","url":null,"abstract":"<div><p>The long-term cultivation of higher plants in space plays a substantial role in investigating the effects of microgravity on plant growth and development, acquiring valuable insights for developing a self-sustaining space life supporting system. The completion of the Chinese Space Station (CSS) provides us with a new permanent space experimental platform for long-term plant research in space. Biological Culture Module (GBCM), which was installed in the Wentian experimental Module of the CSS, was constructed with the objective of growing <em>Arabidopsis thaliana</em> and rice plants a full life cycle in space. The techniques of LED light control, gas regulation and water recovery have been developed for GBCM in which dry seeds of Arabidopsis and rice were set in root module of four culture chambers (CCs) and launched with Wentian module on July 24, 2022. These seeds were watered and germinated from July 28 and grew new seeds until November 26 within a duration of 120 days. To this end, both Arabidopsis and rice plants completed a full life cycle in microgravity on the CSS. As we know, this is the first space experiment achieving rice complete life cycle from seed-to-seed in space. This result demonstrates the possibility to cultivate the important food crop rice throughout its entire life cycle under the spaceflight environment and the technologies of GBCM have effectively supported the success of long-term plant culture experiments in space. These results can serve as invaluable references for constructing more expansive and intricate space plant cultivation systems in the future.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 47-52"},"PeriodicalIF":2.5,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140789092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurostimulation as a technology countermeasure for dry eye syndrome in astronauts 将神经刺激作为宇航员干眼症的技术对策
IF 2.5 3区 生物学
Life Sciences in Space Research Pub Date : 2024-04-16 DOI: 10.1016/j.lssr.2024.04.003
Alex Suh , Joshua Ong , Ethan Waisberg , Andrew G. Lee
{"title":"Neurostimulation as a technology countermeasure for dry eye syndrome in astronauts","authors":"Alex Suh ,&nbsp;Joshua Ong ,&nbsp;Ethan Waisberg ,&nbsp;Andrew G. Lee","doi":"10.1016/j.lssr.2024.04.003","DOIUrl":"https://doi.org/10.1016/j.lssr.2024.04.003","url":null,"abstract":"<div><p>Dry eye syndrome (DES) poses a significant challenge for astronauts during space missions, with reports indicating up to 30% of International Space Station (ISS) crew members. The microgravity environment of space alters fluid dynamics, affecting distribution of fluids on the surface of the eye as well as inducing cephalad fluid shifts that can alter tear drainage. Chronic and persistent DES not only impairs visual function, but also compromises the removal of debris, a heightened risk for corneal abrasions in the microgravity environment. Despite the availability of artificial tears on the ISS, the efficacy is challenged by altered fluid dynamics within the bottle and risks of contamination, thereby exacerbating the potential for corneal abrasions. In light of these challenges, there is a pressing need for innovative approaches to address DES in astronauts. Neurostimulation has emerged as a promising technology countermeasure for DES in spaceflight. By leveraging electrical signals to modulate neural function, neurostimulation offers a novel therapeutic avenue for managing DES symptoms. In this paper, we will explore the risk factors and current treatment modalities for DES, highlighting the limitations of existing approaches. Furthermore, we will delve into the novelty and potential of neurostimulation as a countermeasure for DES in future long-duration missions, including those to the Moon and Mars.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 37-39"},"PeriodicalIF":2.5,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214552424000385/pdfft?md5=a8a26aa6801db7602c2f0dcb08c675aa&pid=1-s2.0-S2214552424000385-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140622381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaging in spaceflight associated neuro-ocular syndrome (SANS): Current technology and future directions in modalities 太空飞行相关神经眼综合征(SANS)的成像:当前技术和未来模式方向
IF 2.5 3区 生物学
Life Sciences in Space Research Pub Date : 2024-04-16 DOI: 10.1016/j.lssr.2024.04.004
Benjamin Soares , Joshua Ong , Ethan Waisberg , Prithul Sarker , Nasif Zaman , Alireza Tavakkoli , Andrew G. Lee
{"title":"Imaging in spaceflight associated neuro-ocular syndrome (SANS): Current technology and future directions in modalities","authors":"Benjamin Soares ,&nbsp;Joshua Ong ,&nbsp;Ethan Waisberg ,&nbsp;Prithul Sarker ,&nbsp;Nasif Zaman ,&nbsp;Alireza Tavakkoli ,&nbsp;Andrew G. Lee","doi":"10.1016/j.lssr.2024.04.004","DOIUrl":"https://doi.org/10.1016/j.lssr.2024.04.004","url":null,"abstract":"<div><p>With plans for future long-duration crewed exploration, NASA has identified several high priority potential health risks to astronauts in space. One such risk is a collection of neurologic and ophthalmic findings termed spaceflight associated neuro-ocular syndrome (SANS). The findings of SANS include optic disc edema, globe flattening, retinal nerve fiber layer thickening, chorioretinal folds, hyperopic shifts, and cotton-wool spots. The cause of SANS was initially thought to be a cephalad fluid shift in microgravity leading to increased intracranial pressure, venous stasis and impaired CSF outflow, but the precise etiology of SANS remains ill defined.</p><p>Recent studies have explored multiple possible pathogenic mechanisms for SANS including genetic and hormonal factors; a cephalad shift of fluid into the orbit and brain in microgravity; and disruption to the brain glymphatic system. Orbital, ocular, and cranial imaging, both on Earth and in space has been critical in the diagnosis and monitoring of SANS (e.g., fundus photography, optical coherence tomography (OCT), magnetic resonance imaging (MRI), and orbital/cranial ultrasound). In addition, we highlight near-infrared spectroscopy and diffusion tensor imaging, two newer modalities with potential use in future studies of SANS. In this manuscript we provide a review of these modalities, outline their current and potential use in space and on Earth, and review the reported major imaging findings in SANS.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 40-46"},"PeriodicalIF":2.5,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140650161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppression of essential oil biosynthesis in sweet basil cotyledons under hypergravity conditions 在超重力条件下抑制甜罗勒子叶的精油生物合成
IF 2.5 3区 生物学
Life Sciences in Space Research Pub Date : 2024-04-13 DOI: 10.1016/j.lssr.2024.04.002
Yu Watanabe , Hana Yamamoto , Ikumi Shimizu , Hiroki Hongo , Arisa Noguchi , Nobuharu Fujii , Takayuki Hoson , Kazuyuki Wakabayashi , Kouichi Soga
{"title":"Suppression of essential oil biosynthesis in sweet basil cotyledons under hypergravity conditions","authors":"Yu Watanabe ,&nbsp;Hana Yamamoto ,&nbsp;Ikumi Shimizu ,&nbsp;Hiroki Hongo ,&nbsp;Arisa Noguchi ,&nbsp;Nobuharu Fujii ,&nbsp;Takayuki Hoson ,&nbsp;Kazuyuki Wakabayashi ,&nbsp;Kouichi Soga","doi":"10.1016/j.lssr.2024.04.002","DOIUrl":"https://doi.org/10.1016/j.lssr.2024.04.002","url":null,"abstract":"<div><p>The mechanism through which gravity influences the biosynthesis of essential oils in herbs is an important issue for plant and space biology. Sweet basil (<em>Ocimum basilicum</em> L.) seedlings were cultivated under centrifugal hypergravity conditions at 100 <em>g</em> in the light, and the growth of cotyledons, development of glandular hairs, and biosynthesis of essential oils were analyzed. The area and fresh weight of the cotyledons increased by similar amounts irrespective of the gravitational conditions. On the abaxial surface of the cotyledons, glandular hairs, where essential oils are synthesized and stored, developed from those with single-cell heads to those with four-cell heads; however, hypergravity did not affect this development. The main components, methyl eugenol and 1,8-cineole, in the essential oils of cotyledons were lower in cotyledons grown under hypergravity conditions. The gene expression of enzymes in the phenylpropanoid pathway involved in the synthesis of methyl eugenol, such as phenylalanine ammonia lyase (PAL) and eugenol <em>O</em>-methyltransferase (EOMT), was downregulated by hypergravity. Hypergravity also decreased the gene expression of enzymes in the 2C-methyl-d-erythritol 4-phosphate (MEP) pathway involved in the synthesis of 1,8-cineole, such as 1-deoxy-d-xylulose-5-phosphate synthase (DXS) and 1,8-cineole synthase (CINS). These results indicate that hypergravity without affecting the development of glandular hairs, decreases the expression of genes related to the biosynthesis of methyl eugenol and 1,8-cineole, which may cause a decrease in the amounts of both essential oils in sweet basil cotyledons.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 1-7"},"PeriodicalIF":2.5,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140618279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
rTMS Ameliorates time-varying depression and social behaviors in stimulated space complex environment associated with VEGF signaling 经颅磁刺激可改善与血管内皮生长因子信号相关的刺激空间复合环境中的时变抑郁和社交行为
IF 2.5 3区 生物学
Life Sciences in Space Research Pub Date : 2024-04-08 DOI: 10.1016/j.lssr.2024.04.001
Qing Xu , Rong Liang , Jing Gao , Yueyue Fan , Jinrui Dong , Ling Wang , Chenguang Zheng , Jiajia Yang , Dong Ming
{"title":"rTMS Ameliorates time-varying depression and social behaviors in stimulated space complex environment associated with VEGF signaling","authors":"Qing Xu ,&nbsp;Rong Liang ,&nbsp;Jing Gao ,&nbsp;Yueyue Fan ,&nbsp;Jinrui Dong ,&nbsp;Ling Wang ,&nbsp;Chenguang Zheng ,&nbsp;Jiajia Yang ,&nbsp;Dong Ming","doi":"10.1016/j.lssr.2024.04.001","DOIUrl":"https://doi.org/10.1016/j.lssr.2024.04.001","url":null,"abstract":"<div><p>Studies have indicated that medium- to long-duration spaceflight may adversely affect astronauts' emotional and social functioning. Emotion modulation can significantly impact astronauts' well-being, performance, mission safety and success. However, with the increase in flight time, the potential alterations in emotional and social performance during spaceflight and their underlying mechanisms remain to be investigated, and targeted therapeutic and preventive interventions have yet to be identified. We evaluated the changes of emotional and social functions in mice with the extension of the time in simulated space complex environment (SSCE), and simultaneously monitored changes in brain tissue of vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), and inflammation-related factors. Furthermore, we assessed the regulatory role of repetitive transcranial magnetic stimulation (rTMS) in mood and socialization with the extension of the time in SSCE, as well as examining alterations of VEGF signaling in the medial prefrontal cortex (mPFC). Our findings revealed that mice exposed to SSCE for 7 days exhibited depressive-like behaviors, with these changes persisting throughout SSCE period. In addition, 14 days of rTMS treatment significantly ameliorated SSCE-induced emotional and social dysfunction, potentially through modulation of the level of VEGF signaling in mPFC. These results indicates that emotional and social disorders increase with the extension of SSCE time, and rTMS can improve the performance, which may be related to VEGF signaling. This study offers insights into potential pattern of change over time for mental health issues in astronauts. Further analysis revealed that rTMS modulates emotional and social dysfunction during SSCE exposure, with its mechanism potentially being associated with VEGF signaling.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 17-26"},"PeriodicalIF":2.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140618280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lower body negative pressure as a research tool and countermeasure for the physiological effects of spaceflight: A comprehensive review 将下半身负压作为研究工具和太空飞行生理效应的对策:全面回顾
IF 2.5 3区 生物学
Life Sciences in Space Research Pub Date : 2024-04-06 DOI: 10.1016/j.lssr.2024.03.007
Phani Paladugu , Rahul Kumar , Joshua Ong , Ethan Waisberg , Nasif Zaman , Sharif Amit Kamran , Alireza Tavakkoli , Maria Chiara Rivolta , Nicolas Nelson , Taehwan Yoo , Vivian Paraskevi Douglas , Konstantinos Douglas , Amy Song , Hanna Tso , Andrew G. Lee
{"title":"Lower body negative pressure as a research tool and countermeasure for the physiological effects of spaceflight: A comprehensive review","authors":"Phani Paladugu ,&nbsp;Rahul Kumar ,&nbsp;Joshua Ong ,&nbsp;Ethan Waisberg ,&nbsp;Nasif Zaman ,&nbsp;Sharif Amit Kamran ,&nbsp;Alireza Tavakkoli ,&nbsp;Maria Chiara Rivolta ,&nbsp;Nicolas Nelson ,&nbsp;Taehwan Yoo ,&nbsp;Vivian Paraskevi Douglas ,&nbsp;Konstantinos Douglas ,&nbsp;Amy Song ,&nbsp;Hanna Tso ,&nbsp;Andrew G. Lee","doi":"10.1016/j.lssr.2024.03.007","DOIUrl":"https://doi.org/10.1016/j.lssr.2024.03.007","url":null,"abstract":"<div><p>Lower Body Negative Pressure (LBNP) redistributes blood from the upper body to the lower body. LBNP may prove to be a countermeasure for the multifaceted physiological changes endured by astronauts during spaceflight related to cephalad fluid shift. Over more than five decades, beginning with the era of Skylab, advancements in LBNP technology have expanded our understanding of neurological, ophthalmological, cardiovascular, and musculoskeletal adaptations in space, with particular emphasis on mitigating issues such as bone loss. To date however, no comprehensive review has been conducted that chronicles the evolution of this technology or elucidates the broad-spectrum potential of LBNP in managing the diverse physiological challenges encountered in the microgravity environment. Our study takes a chronological perspective, systematically reviewing the historical development and application of LBNP technology in relation to the various pathophysiological impacts of spaceflight. The primary objective is to illustrate how this technology, as it has evolved, offers an increasingly sophisticated lens through which to interpret the systemic effects of space travel on human physiology. We contend that the insights gained from LBNP studies can significantly aid in formulating targeted and effective countermeasures to ensure the health and safety of astronauts. Ultimately, this paper aspires to promote a more cohesive understanding of the broad applicability of LBNP as a countermeasure against multiple bodily effects of space travel, thereby contributing to a safer and more scientifically informed approach to human space exploration.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"42 ","pages":"Pages 8-16"},"PeriodicalIF":2.5,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140618299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信