Viktor S. Kokhan , Kirill Chaprov , Denis A. Abaimov , Maxim S. Nesterov , Vladimir A. Pikalov
{"title":"Combined irradiation by gamma-rays and carbon-12 nuclei caused hyperlocomotion and change in striatal metabolism of rats","authors":"Viktor S. Kokhan , Kirill Chaprov , Denis A. Abaimov , Maxim S. Nesterov , Vladimir A. Pikalov","doi":"10.1016/j.lssr.2024.08.005","DOIUrl":"10.1016/j.lssr.2024.08.005","url":null,"abstract":"<div><div>Exposure to ionizing radiation during manned deep space missions to Mars could lead to functional impairments of the central nervous system, which may compromise the success of the mission and affect the quality of life for returning astronauts. Along with radiation-induced changes in cognitive abilities and emotional status, the effects of increased motor activity were observed. The mechanisms behind these phenomena still remain unresolved. We conducted a study on grip strength, locomotor activity and intrasession habituation to novelty in 5-month-old rats after exposure to radiation (combined 0.4 Gy gamma-rays and 0.14 Gy <sup>12</sup>C nuclei). At the same time, we carried out neurochemical and molecular analysis of the nucleus accumbens (NAc) and the dorsal striatum (dST). The study revealed radiation-induced hyperlocomotion and enhanced habituation. It also showed an increase in choline concentration and a decreased in 5-hydroxyindoleacetic acid concentration in the NAc after irradiation. In addition to this, a down-regulation of syntaxin 1A in NAc and dST as well as up-regulation α-synuclein in NAc were observed. The obtained data indicate both the damaging effect of irradiation on striatum tissues and the initiation of neuronal/axonal regeneration processes. It is hypothesized that the increase in choline concentration in NAc and the decreased content of syntaxin 1A in dST may be the part of the mechanism responsible for the radiation-induced hyperlocomotion.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"44 ","pages":"Pages 99-107"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Space radiation measured during first-ever commercial suborbital mission on Virgin Galactic SpaceShipTwo Unity on 29 June 2023","authors":"Tsvetan Dachev , Pantaleone Carlucci , Francesco Cairo , Borislav Tomov , Yuri Matviichuk , Plamen Dimitrov , Mityo Mitev , Malina Jordanova , Lucia Paciucci","doi":"10.1016/j.lssr.2024.09.003","DOIUrl":"10.1016/j.lssr.2024.09.003","url":null,"abstract":"<div><div>The paper presents the variations of space radiation (primary and secondary galactic cosmic rays (GCR) absorbed dose rate in silicon and flux) measured during the first-ever commercial suborbital flight of the Virgin Galactic (VG) SpaceShipTwo Unity on 29 June 2023. A Portable Dosimeter-Spectrometer Liulin-CNR-VG is used. It is developed in the Space Research and Technology Institute, Bulgarian Academy of Sciences (SRTI-BAS) under a scientific contract with National Research Council of Italy (CNR), Italy. Liulin-CNR-VG size is 63х54 × 23 mm. Its weight is 0.092 kg. During the first part of the SpaceShipTwo flight, up to 14.4 km, the dose rate rises from 0.058 μGy h<sup>-1</sup> up to 2.5 μGy h<sup>-1</sup>. Above the altitude of 30 km, the dose rate falls to 2.2 μGy h<sup>-1</sup>, while the dose to flux ratio increases to values about 1.0 nGy cm<sup>2</sup> particle<sup>-1</sup>. The latter confirms the outcomes of previous balloon experiments, i.e. the change of the composition of the radiation field of the GCR and secondary radiation source from predominantly light particles as electrons, pions and muons towards heavier particles as protons and neutrons. On the descending part of the flight, one maximum in the flux and dose rate curves is obtained as Regener-Pfotzer maximum (R-PM). The flux calculated by the moving avervage is equal to 1.2 cm<sup>-2</sup> s<sup>-1</sup> and the dose rate is equal to 2.9 μGy h<sup>-1</sup> at an altitude of 13 km. These values are well in line with those expected in conditions of relatively high solar activity, such as during the flight. The dose rates measured by Liulin-CNR-VG are in good agreement with other Liulin data, such as those recorded during balloon flights in 2005 and 2015 and civil aviation flights. The calculated total equivalent dose rate during the VG SpaceShipTwo flight is 7.46 μSv for 1.22 h. This reveals that there is a very small radiation risk for the pilots and astronauts flying at the VG SpaceShipTwo up to 85.1 1 km altitude.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"44 ","pages":"Pages 126-133"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frieda B. Taub, Kate M. McGrath-Flinn, Natalie E. Stillwell, Rachel Haden Kasbohm
{"title":"Behavior of simple closed ecological systems; lower nutrient concentrations allow longer persistence of grazer populations","authors":"Frieda B. Taub, Kate M. McGrath-Flinn, Natalie E. Stillwell, Rachel Haden Kasbohm","doi":"10.1016/j.lssr.2024.12.002","DOIUrl":"10.1016/j.lssr.2024.12.002","url":null,"abstract":"<div><div>We expect to develop self-sustaining extraterrestrial colonies, and they will approach being closed ecological systems. Using simple closed ecosystems containing <em>Daphnia magna</em>, three species of algae, and microbes, we tested multiple conditions to study long-term organism survival, which is only possible with adequate nutrient recycling. Closed and open systems behaved differently from one another at high nitrate concentrations; in closed systems, the animals were dead by day 14; in open systems, the <em>Daphnia</em> populations persisted beyond 273 days. <em>Daphnia</em> deaths were associated with increased pH and O<sub>2</sub> caused by greater algal photosynthesis and the lack of exchange with the atmosphere. Replicate variability that used small <em>Daphnia</em> suggested that inadequate grazing capability allowed algae to create conditions unfavorable to <em>Daphnia</em> survival. Over months, algal and <em>Daphnia</em> abundance decreased, presumably because of inadequate nutrient recycling; these populations increased temporarily after the addition of nutrients. The addition of natural lake organisms did not increase the nutrient-recycling capabilities of the systems. Understanding the mechanisms of closed systems will be useful in implementing biological processes in managing life support systems.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"44 ","pages":"Pages 47-57"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong-Yun Nie , Jun Ge , Kai-Ge Liu , Yuan Yue , Hao Li , Hai-Guan Lin , Tao Zhang , Hong-Feng Yan , Bing-Xin Xu , Hong-Wei Sun , Jian-Wu Yang , Shao-Yan Si , Jin-Lian Zhou , Yan Cui
{"title":"Moxifloxacin plus Cordyceps polysaccharide ameliorate intestinal barrier damage due to abdominal infection via anti-inflammation and immune regulation under simulated microgravity","authors":"Hong-Yun Nie , Jun Ge , Kai-Ge Liu , Yuan Yue , Hao Li , Hai-Guan Lin , Tao Zhang , Hong-Feng Yan , Bing-Xin Xu , Hong-Wei Sun , Jian-Wu Yang , Shao-Yan Si , Jin-Lian Zhou , Yan Cui","doi":"10.1016/j.lssr.2024.11.005","DOIUrl":"10.1016/j.lssr.2024.11.005","url":null,"abstract":"<div><h3>Background</h3><div>Currently, there is limited research on the impact of abdominal infection on intestinal damage under microgravity conditions. Cordyceps polysaccharide (CPS), the main active ingredient of Cordyceps, has demonstrated various pharmacological effects, including anti-inflammatory, antioxidant, and immunomodulatory properties. Moxifloxacin (MXF) is a fourth-generation quinolone antibiotic that is believed to have a dual regulatory effect on immune system activation and suppression. Our objective was to investigate the effects of MXF plus CPS on the intestinal barrier damage due to abdominal infection under microgravity.</div></div><div><h3>Methods</h3><div>The hindlimb unloading model in rats was employed to simulate microgravity. The rat model of abdominal infection was established by cecal ligation and puncture (CLP). MXF, CPS and the combination of the two drugs were used to treat CLP-rats in simulated microgravity. We assessed histopathological changes of ileum by hematoxylin and eosin staining. The intestinal ultrastructure was observed under transmission electron microscopy. Additionally, the expression of intestinal barrier proteins RegIII α/γ and MUC2 was detected by Western blot analysis, while the localization of these proteins within the ileum was examined using immunohistochemistry. Cytometric bead array (CBA) was employed to detect cytokine including IL-6, TNF-α, IL-1β, IL-1α, CXCL-1, MCP-1, IL-17A, IL-18, and IL-33. Flow cytometry analysis was conducted to determine the percentages of Treg cells, M1 macrophages, M2 macrophages, T cells and CD8<sup>+</sup><em>T</em> cells.</div></div><div><h3>Results</h3><div>The results showed that compared with the normal gravity groups, the simulated microgravity groups exhibited a significant decrease in RegIII α/γ protein expression, an increase in M1 macrophage frequency, and elevated levels of TNF-α, IL-1α, MCP-1 and IL-6. Notably, the combined application of MXF and CPS effectively mitigated intestinal barrier damage in CLP-rats exposed to microgravity, as evidenced by alleviated ultrastructural and pathological impairments in ileum, along with increased expression of key intestinal barrier proteins MUC2 and RegIII α/γ. Furthermore, the combination therapy enhances the proportion of T cells, CD8<sup>+</sup> <em>T</em> cells, and M2 macrophages in septic rats exposed to simulated microgravity while reducing the frequency of Treg cells and M1 macrophages. MXF plus CPS also led to a reduction of proinflammatory cytokines and chemokines, including IL-6, TNF-α, IL-1β, IL-1α, CXCL-1, MCP-1, IL18, and IL33.</div></div><div><h3>Conclusion</h3><div>Our study showed that MXF plus CPS exhibited a protective effect on intestinal barrier damage due to abdominal infection under microgravity, potentially attributed to its anti-inflammatory properties and immune regulatory mechanisms. These findings may provide insights into the development of drugs targeting abdominal infections in t","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"44 ","pages":"Pages 23-37"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A.S. Nemec-Bakk , V. Sridharan , J.S. Willey , I. Koturbash , D.K. Williams , M. Chesal , C.M. Patel , A.M. Borg , K. Reno , G. Gifford , W. Newhauser , J. Williams , J.C. Chancellor , M. Boerma
{"title":"Sex-specific effects on the heart from combined exposure to simulated galactic cosmic radiation and hindlimb unloading","authors":"A.S. Nemec-Bakk , V. Sridharan , J.S. Willey , I. Koturbash , D.K. Williams , M. Chesal , C.M. Patel , A.M. Borg , K. Reno , G. Gifford , W. Newhauser , J. Williams , J.C. Chancellor , M. Boerma","doi":"10.1016/j.lssr.2024.12.001","DOIUrl":"10.1016/j.lssr.2024.12.001","url":null,"abstract":"<div><div>Future long duration space missions will expose astronauts to higher doses of galactic cosmic radiation (GCR) than those experienced on the international space station. Recent studies have demonstrated astronauts may be at risk for cardiovascular complications due to increased radiation exposure and fluid shift from microgravity. However, there is a lack of direct evidence on how the cardiovascular system is affected by GCR and microgravity since no astronauts have been exposed to exploratory mission relevant GCR doses. Therefore, we utilized a ground-based mouse model to determine the cardiovascular risks for space radiation exposure while the mice were simultaneously hindlimb suspended to mimic microgravity. 6-month-old male and female C57BL/6 mice were exposed to an absorbed dose of 0 Gy, 0.5 Gy, or 1.5 Gy simulated GCR (GCRsim) that comprised beams of 5 ions at NASA's Space Radiation Laboratory. Subcohorts of mice were hindlimb unloaded (HLU), starting 5 days before GCRsim until the completion of radiation exposure. GCRsim + HLU was performed over 8 hours (0.5 Gy) or 24 hours (1.5 Gy). After completion of GCRsim and HLU, mice were shipped to UAMS for long-term observation. Cardiac function was measured using high resolution ultrasound at 6 and 9 months after exposure. Tissues were collected after the final ultrasound and prepared for further analysis. Female mice exposed to 1.5 Gy + HLU demonstrated a significant increase in body weight compared to ground controls months after GCR exposure; however, there was no change in male body weights. Cardiac ultrasound revealed 0.5 Gy GCRsim decreased left ventricular (LV) mass, LV posterior wall thickness in diastole, and systole in males 6 months after exposure. In females, 1.5 Gy + HLU significantly increased LV posterior wall thickness in diastole and systole at 6 months. These changes in ultrasound measurements were no longer seen at 9 months. Moreover, at 9 months there was no change in total collagen content or density of the capillary network in the heart. Lastly, the combination of GCRsim and HLU influenced immune cell markers in the heart of female mice. These data suggest that combined simulated GCR and microgravity result in minor, yet statistically significant sex-dependent changes to body weight and cardiac structure.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"44 ","pages":"Pages 38-46"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrated spaceflight transcriptomic analyses and simulated space experiments reveal key molecular features and functional changes driven by space stressors in space-flown C. elegans","authors":"Ge Zhang, Lei Zhao, Zejun Li, Yeqing Sun","doi":"10.1016/j.lssr.2024.11.004","DOIUrl":"10.1016/j.lssr.2024.11.004","url":null,"abstract":"<div><div>The space environment presents unique stressors, such as microgravity and space radiation, which can induce molecular and physiological changes in living organisms. To identify key reproducible transcriptomic features and explore potential biological roles in space-flown <em>C. elegans</em>, we integrated transcriptomic data from <em>C. elegans</em> subjected to four spaceflights aboard the International Space Station (ISS) and identified 32 reproducibly differentially expressed genes (DEGs). These DEGs were enriched in pathways related to the structural constituent of cuticle, defense response, unfolded protein response, longevity regulation, extracellular structural organization, and signal receptor regulation. Among these 32 DEGs, 13 genes were consistently downregulated across four spaceflight conditions, primarily associated with the structural constituent of the cuticle. The remaining genes, involved in defense response, unfolded protein response, and longevity regulation pathway, exhibited distinct patterns depending on spaceflight duration: they were downregulated during short-term spaceflights but upregulated during long-term spaceflights. To explore the potential space stressors responsible for these transcriptomic changes, we performed qRT-PCR experiments on <em>C. elegans</em> exposed to simulated microgravity and low-dose radiation. Our results demonstrated that cuticle-related gene expression was significantly downregulated under both simulated microgravity and low-dose radiation conditions. In contrast, almost all genes involved in defense response, unfolded protein response, and longevity regulation pathway were downregulated under simulated microgravity but upregulated under low-dose radiation exposure. These findings suggest that both microgravity and space radiation inhibit cuticle formation; microgravity as the primary stressor inhibit defense response, unfolded protein response, and longevity regulation pathway during short-term spaceflights, while space radiation may promote these processes during long-term spaceflights. In summary, through integrated spaceflight transcriptomic analyses and simulated space experiments, we identified key transcriptomic features and potential biological functions in space-flown <em>C. elegans</em>, shedding light on the space stressors responsible for these changes. This study provides new insights into the molecular and physiological adaptations of <em>C. elegans</em> to spaceflight, highlighting the distinct impacts of microgravity and space radiation.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"44 ","pages":"Pages 10-22"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biofilm dynamics in space and their potential for sustainable space exploration – A comprehensive review","authors":"V G Sowmeya, Mythili Sathiavelu","doi":"10.1016/j.lssr.2024.08.006","DOIUrl":"10.1016/j.lssr.2024.08.006","url":null,"abstract":"<div><div>Microbial biofilms are universal. The intricate tapestry of biofilms has remarkable implications for the environment, health, and industrial processes. The field of space microbiology is actively investigating the effects of microgravity on microbes, and discoveries are constantly being made. Recent evidence suggests that extraterrestrial environments also fuel the biofilm formation. Understanding the biofilm mechanics under microgravitational conditions is crucial at this stage and could have an astounding impact on inter-planetary missions. This review systematically examines the existing understanding of biofilm development in space and provides insight into how molecules, physiology, or environmental factors influence biofilm formation during microgravitational conditions. In addition, biocontrol strategies targeting the formation and dispersal of biofilms in space environments are explored. In particular, the article highlights the potential benefits of using microbial biofilms in space for bioremediation, life support systems, and biomass production applications.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"44 ","pages":"Pages 108-121"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Space biological and human survival: Investigations into plants, animals, microorganisms and their components and bioregenerative life support systems","authors":"Lin Cheng , Yitong Li , Jing Yan","doi":"10.1016/j.lssr.2024.10.007","DOIUrl":"10.1016/j.lssr.2024.10.007","url":null,"abstract":"<div><div>Space life science has been a frontier discipline in the life sciences, aiming to study the life phenomena of earth organisms and their activity patterns under the special environment of space. This review summarizes studies in various key topics in space life science, namely, how microbiome changes in humans and plants, the development of space agriculture and the use of animal, plant and cell models to study the effect of space environments on physiology. We highlight the new possibilities of using high-quality protein crystals uniquely available when grown under space conditions to aid drug development on earth, and the state-of-the-art Bioregenerative Life Support Systems (BLSS) to achieve long term human survival in space.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"44 ","pages":"Pages 143-153"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdurrahman Engin Demir , Elif Nur Sevinc , Mustafa Ulubay
{"title":"The Effects of Cosmic Radiation Exposure on Pregnancy During a Probable Manned Mission to Mars","authors":"Abdurrahman Engin Demir , Elif Nur Sevinc , Mustafa Ulubay","doi":"10.1016/j.lssr.2024.10.008","DOIUrl":"10.1016/j.lssr.2024.10.008","url":null,"abstract":"<div><div>Space missions have revealed certain disincentive factors of this unique environment, such as microgravity, cosmic radiation, etc., as the aerospace industry has made substantial progress in exploring deep space and its impacts on human body. Galactic cosmic radiation (GCR), a form of ionizing radiation, is one of those environmental factors that has potential health implications and, as a result, may limit the duration – and possibly the occurrence – of deep-space missions. High doses of cosmic radiation exposure during spaceflight, particularly during exploration class missions, may have teratogenic effects on a developing fetus, if an unintended pregnancy occurs shortly before or during the flight. This study aimed to discuss whether the cumulative dosage for a pregnant woman during a probable manned mission to Mars may exceed the terrestrial teratogenic radiation limit. A variety of studies, technical documents, and publications that provided flight duration data and the absorbed cosmic radiation dosage equivalents between Earth and Mars were analyzed. A literature-based hypothetical model of a pregnancy simulation over a 6-month spaceflight was also designed to estimate the cumulative absorbed GCR dose. The estimated dose rates ranged from 90 to 324 mSv. Assuming that a pregnant crew member is exposed to this dosage range, the total teratogenic dose equivalent to the embryo/fetus appear to be significantly higher than that of the National Council on Radiation Protection (NCRP)’s and United States Nuclear Regulatory Commission (USNRC)’s recommendations, which state a maximum radiation dose of 5 mSv for the duration of the pregnancy, and thus such an exceeded dose may likely result in teratogenesis. Current protective strategies may not be sufficient to protect the human genome from the detrimental effects of cosmic radiation, and they need be improved for long-term interplanetary travels during human colonization of Mars.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"44 ","pages":"Pages 154-162"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shirin Rahmanian , Tony C. Slaba , Stuart George , Leslie A. Braby , Sharmila Bhattacharya , Tore Straume , Sergio R. Santa Maria
{"title":"Galactic cosmic ray environment predictions for the NASA BioSentinel Mission, part 2:Post-mission validation","authors":"Shirin Rahmanian , Tony C. Slaba , Stuart George , Leslie A. Braby , Sharmila Bhattacharya , Tore Straume , Sergio R. Santa Maria","doi":"10.1016/j.lssr.2024.10.006","DOIUrl":"10.1016/j.lssr.2024.10.006","url":null,"abstract":"<div><div>The BioSentinel CubeSat was deployed on the Artemis-I mission in November 2022 and has been continuously transmitting physical measurements of the space radiation environment since that time. Just before mission launch, we published computational model predictions of the galactic cosmic ray exposure expected inside BioSentinel for multiple locations and configurations. The predictions utilized models for the ambient galactic cosmic ray environment, radiation physics and transport, and BioSentinel geometry. Now that the nominal six-month BioSentinel mission has completed and some additional time has passed, those pre-launch predictions and additional model components can be validated. Dose-rate and linear energy transfer (LET) spectral measurements from the on-board dosimeter are presented along with a summary of the computational models used to calculate exposure quantities of interest. Sensitivity tests are performed to gauge the impact of various model choices on these quantities. Satellite data collected during the BioSentinel mission are used to provide some measure of independent validation for the galactic cosmic ray model used in the present calculations. It is shown that the combined models are in excellent agreement with the measured dose-rate. Model calculations agree well with measurement below ∼10 keV/µm and underpredict at higher LET. It is argued that the underprediction is likely due to detector response or low energy anomalous cosmic ray contributions able to reach the thinly shielded side of the on-board dosimeter.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"44 ","pages":"Pages 134-142"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}