Journal of Zhejiang University SCIENCE B最新文献

筛选
英文 中文
Establishment of a standardized daily behavior collection and analysis system for brain disease models of rhesus and cynomolgus monkeys and its application in autism spectrum disorder. 恒河猴、食蟹猴脑疾病模型标准化日常行为采集分析系统的建立及其在自闭症谱系障碍中的应用
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-11-15 DOI: 10.1631/jzus.B2400294
Xiaofeng Ren, Huimin Wang, Xiaoman Lv, Yi Zhou, Yingyin Fan, Yanjun Yu, Christoph W Turck, Yuhui Chen, Longbao Lv, Yingzhou Hu, Hao Li, Wenchao Wang, Dongdong Qin, Xiaoli Feng, Xintian Hu
{"title":"Establishment of a standardized daily behavior collection and analysis system for brain disease models of rhesus and cynomolgus monkeys and its application in autism spectrum disorder.","authors":"Xiaofeng Ren, Huimin Wang, Xiaoman Lv, Yi Zhou, Yingyin Fan, Yanjun Yu, Christoph W Turck, Yuhui Chen, Longbao Lv, Yingzhou Hu, Hao Li, Wenchao Wang, Dongdong Qin, Xiaoli Feng, Xintian Hu","doi":"10.1631/jzus.B2400294","DOIUrl":"10.1631/jzus.B2400294","url":null,"abstract":"<p><p>Complex brain diseases seriously endanger human health, and early diagnostic biomarkers and effective treatments are currently lacking. Due to ethical constraints on human research, establishing monkey models is crucial to address these issues. With the rapid development of technology, transgenic monkey models of a range of brain diseases, especially autism spectrum disorder (ASD), have been successfully established. However, to establish practical and effective brain disease models and subsequently apply them to disease mechanism and treatment studies, there is still a lack of a standard tool, i.e., a system for collecting and analyzing the daily behaviors of brain disease model monkeys. Therefore, with the goal of undertaking a comprehensive and quantitative study of behavioral phenotypes, we established a standard daily behavior collection and analysis system, including behavioral data collection protocols and a monkey daily behavior ethogram (MDBE) for rhesus and cynomolgus monkeys, which are the most commonly used non-human primates in model construction. Then, we used ASD as an application example after referring to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision (DSM-5-TR), which is widely used in clinical disease diagnosis to obtain ASD core clinical symptoms. We then established a sub-ethogram (ASD monkey core behavior ethogram (MCBE-ASD)) specifically for quantitative assessment of the core clinical symptoms of an ASD monkey model based on MDBE. Subsequently, we demonstrated the high reproducibility of the system.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 11","pages":"972-995"},"PeriodicalIF":4.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634448/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142770275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficacy of adjunctive systemic or local antibiotic therapy in peri-implantitis: a systematic review and meta-analysis of randomized controlled clinical trials. 系统或局部抗生素辅助疗法对种植体周围炎的疗效:随机对照临床试验的系统回顾和荟萃分析。
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-11-07 DOI: 10.1631/jzus.B2300730
Yifan Lu, Siqi Bao, Hongke Luo, Qianming Chen, Misi Si
{"title":"Efficacy of adjunctive systemic or local antibiotic therapy in peri-implantitis: a systematic review and meta-analysis of randomized controlled clinical trials.","authors":"Yifan Lu, Siqi Bao, Hongke Luo, Qianming Chen, Misi Si","doi":"10.1631/jzus.B2300730","DOIUrl":"10.1631/jzus.B2300730","url":null,"abstract":"<p><p>This systematic review and meta-analysis considered the results of randomized controlled clinical trials (RCTs) to evaluate the efficacy of systemic or local antibiotic therapy in peri-implantitis. Two independent authors screened publications from three electronic databases to include RCTs meeting all the inclusion and exclusion criteria. A meta-analysis was performed to evaluate the weighted mean differences in survival rate (SR) and changes in pocket probing depth (PPD), bone level (BL), and clinical attachment level (CAL). The study cohorts were defined as antibiotic and control groups with subgroups for analysis. Seven studies including 309 patients (390 implants) were considered. Within the limitations of this review, patients in the antibiotic groups exhibited significant improvements in PPD. Subgroup analysis indicated that the administration of systemic antibiotics or the use of antibiotics in non-surgical treatments did not result in a significant alteration in BL. It was established that the addition of antibiotics can ameliorate PPD and SR in the treatment of peri-implantitis, whether through surgical or non-surgical approaches, and also shows moderate performance regarding BL and CAL. Considering the lack of application of new technologies in the control group and the hardship of assessing the potential risks of antibiotics, careful clinical judgment is still necessary.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"26 2","pages":"145-157"},"PeriodicalIF":4.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867786/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ATP-binding cassette (ABC) transporters: structures and roles in bacterial pathogenesis. ATP结合盒(ABC)转运体:结构和在细菌致病过程中的作用。
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-10-21 DOI: 10.1631/jzus.B2300641
Shu Sian How, Sheila Nathan, Su Datt Lam, Sylvia Chieng
{"title":"ATP-binding cassette (ABC) transporters: structures and roles in bacterial pathogenesis.","authors":"Shu Sian How, Sheila Nathan, Su Datt Lam, Sylvia Chieng","doi":"10.1631/jzus.B2300641","DOIUrl":"10.1631/jzus.B2300641","url":null,"abstract":"<p><p>Adenosine triphosphate (ATP)-binding cassette (ABC) transporter systems are divided into importers and exporters that facilitate the movement of diverse substrate molecules across the lipid bilayer, against the concentration gradient. These transporters comprise two highly conserved nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Unlike ABC exporters, prokaryotic ABC importers require an additional substrate-binding protein (SBP) as a recognition site for specific substrate translocation. The discovery of a large number of ABC systems in bacterial pathogens revealed that these transporters are crucial for the establishment of bacterial infections. The existing literature has highlighted the roles of ABC transporters in bacterial growth, pathogenesis, and virulence. These roles include importing essential nutrients required for a variety of cellular processes and exporting outer membrane-associated virulence factors and antimicrobial substances. This review outlines the general structures and classification of ABC systems to provide a comprehensive view of the activities and roles of ABC transporters associated with bacterial virulence and pathogenesis during infection.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":" ","pages":"1-18"},"PeriodicalIF":4.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic exposure to hexavalent chromium induces esophageal tumorigenesis via activating the Notch signaling pathway. 慢性暴露于六价铬通过激活Notch信号通路诱导食管肿瘤发生。
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-10-21 DOI: 10.1631/jzus.B2300896
Yilin Zhu, Fanrong Liu, Lei Liu, Jinfu Wang, Fengyuan Gao, Lan Ye, Honglei Wu, Chengjun Zhou, Guimei Lin, Xiaogang Zhao, Peichao Li
{"title":"Chronic exposure to hexavalent chromium induces esophageal tumorigenesis via activating the Notch signaling pathway.","authors":"Yilin Zhu, Fanrong Liu, Lei Liu, Jinfu Wang, Fengyuan Gao, Lan Ye, Honglei Wu, Chengjun Zhou, Guimei Lin, Xiaogang Zhao, Peichao Li","doi":"10.1631/jzus.B2300896","DOIUrl":"10.1631/jzus.B2300896","url":null,"abstract":"<p><p>Hexavalent chromium Cr(VI), as a well-established carcinogen, contributes to tumorigenesis for many human cancers, especially respiratory and digestive tumors. However, the potential function and relevant mechanism of Cr(VI) on the initiation of esophageal carcinogenesis are largely unknown. Here, immortalized human esophageal epithelial cells (HEECs) were induced to be malignantly transformed cells, termed HEEC-Cr(VI) cells, via chronic exposure to Cr(VI), which simulates the progress of esophageal tumorigenesis. In vitro and in vivo experiments demonstrated that HEEC-Cr(VI) cells obtain the ability of anchorage-independent growth, greater proliferative capacity, cancer stem cell properties, and the capacity to form subcutaneous xenografts in BALB/c nude mice when compared to their parental cells, HEECs. Additionally, HEEC-Cr(VI) cells exhibited weakened cell motility and enhanced cell adhesion. Interestingly, HEECs with acute exposure to Cr(VI) failed to display those malignant phenotypes of HEEC-Cr(VI) cells, suggesting that Cr(VI)‍-induced malignant transformation, but not Cr(VI) itself, is the cause for the tumor characteristics of HEEC-Cr(VI) cells. Mechanistically, chronic exposure to Cr(VI) induced abnormal activation of Notch signaling, which is crucial to maintaining the capacity for malignant proliferation and stemness of HEEC-Cr(VI) cells. As expected, <i>N</i>-‍[<i>N</i>-‍(3,5-difluorophenacetyl)‍-L-alanyl]‍-<i>S</i>-phenylglycine <i>t</i>-butyl ester (DAPT), an inhibitor for the Notch pathway, drastically attenuated cancerous phenotypes of HEEC-Cr(VI) cells. In conclusion, our study clarified the molecular mechanism underlying Cr(VI)‍-induced esophageal tumorigenesis, which provides novel insights for further basic research and clinical therapeutic strategies about Cr(VI)‍-associated esophageal cancer.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"26 1","pages":"76-91"},"PeriodicalIF":4.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143007801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ATP-binding cassette (ABC) transporters: structures and roles in bacterial pathogenesis. atp结合盒(ABC)转运体:结构和在细菌发病中的作用。
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-10-21 DOI: 10.1631/jzus.B2300641
Shu Sian How, Sheila Nathan, Su Datt Lam, Sylvia Chieng
{"title":"ATP-binding cassette (ABC) transporters: structures and roles in bacterial pathogenesis.","authors":"Shu Sian How, Sheila Nathan, Su Datt Lam, Sylvia Chieng","doi":"10.1631/jzus.B2300641","DOIUrl":"10.1631/jzus.B2300641","url":null,"abstract":"<p><p>Adenosine triphosphate (ATP)-binding cassette (ABC) transporter systems are divided into importers and exporters that facilitate the movement of diverse substrate molecules across the lipid bilayer, against the concentration gradient. These transporters comprise two highly conserved nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Unlike ABC exporters, prokaryotic ABC importers require an additional substrate-binding protein (SBP) as a recognition site for specific substrate translocation. The discovery of a large number of ABC systems in bacterial pathogens revealed that these transporters are crucial for the establishment of bacterial infections. The existing literature has highlighted the roles of ABC transporters in bacterial growth, pathogenesis, and virulence. These roles include importing essential nutrients required for a variety of cellular processes and exporting outer membrane-associated virulence factors and antimicrobial substances. This review outlines the general structures and classification of ABC systems to provide a comprehensive view of the activities and roles of ABC transporters associated with bacterial virulence and pathogenesis during infection.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"26 1","pages":"58-75"},"PeriodicalIF":4.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143007799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic exposure to hexavalent chromium induces esophageal tumorigenesis via activating the Notch signaling pathway. 慢性接触六价铬可通过激活 Notch 信号通路诱导食管肿瘤发生。
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-10-18 DOI: 10.1631/jzus.B2300896
Yilin Zhu, Fanrong Liu, Lei Liu, Jinfu Wang, Fengyuan Gao, Lan Ye, Honglei Wu, Chengjun Zhou, Guimei Lin, Xiaogang Zhao, Peichao Li
{"title":"Chronic exposure to hexavalent chromium induces esophageal tumorigenesis via activating the Notch signaling pathway.","authors":"Yilin Zhu, Fanrong Liu, Lei Liu, Jinfu Wang, Fengyuan Gao, Lan Ye, Honglei Wu, Chengjun Zhou, Guimei Lin, Xiaogang Zhao, Peichao Li","doi":"10.1631/jzus.B2300896","DOIUrl":"10.1631/jzus.B2300896","url":null,"abstract":"<p><p>Hexavalent chromium Cr(VI), as a well-established carcinogen, contributes to tumorigenesis for many human cancers, especially respiratory and digestive tumors. However, the potential function and relevant mechanism of Cr(VI) on the initiation of esophageal carcinogenesis are largely unknown. Here, immortalized human esophageal epithelial cells (HEECs) were induced to be malignantly transformed cells, termed HEEC-Cr(VI) cells, via chronic exposure to Cr(VI), which simulates the progress of esophageal tumorigenesis. In vitro and in vivo experiments demonstrated that HEEC-Cr(VI) cells obtain the ability of anchorage-independent growth, greater proliferative capacity, cancer stem cell properties, and the capacity to form subcutaneous xenografts in BALB/c nude mice when compared to their parental cells, HEECs. Additionally, HEEC-Cr(VI) cells exhibited weakened cell motility and enhanced cell adhesion. Interestingly, HEECs with acute exposure to Cr(VI) failed to display those malignant phenotypes of HEEC-Cr(VI) cells, suggesting that Cr(VI)‍-induced malignant transformation, but not Cr(VI) itself, is the cause for the tumor characteristics of HEEC-Cr(VI) cells. Mechanistically, chronic exposure to Cr(VI) induced abnormal activation of Notch signaling, which is crucial to maintaining the capacity for malignant proliferation and stemness of HEEC-Cr(VI) cells. As expected, <i>N</i>-‍[<i>N</i>-‍(3,5-difluorophenacetyl)‍-L-alanyl]‍-<i>S</i>-phenylglycine <i>t</i>-butyl ester (DAPT), an inhibitor for the Notch pathway, drastically attenuated cancerous phenotypes of HEEC-Cr(VI) cells. In conclusion, our study clarified the molecular mechanism underlying Cr(VI)‍-induced esophageal tumorigenesis, which provides novel insights for further basic research and clinical therapeutic strategies about Cr(VI)‍-associated esophageal cancer.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":" ","pages":"1-16"},"PeriodicalIF":4.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligence for brain disease diagnosis using electroencephalogram signals. 利用脑电信号进行脑疾病诊断的人工智能。
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-10-15 DOI: 10.1631/jzus.B2400103
Shunuo Shang, Yingqian Shi, Yajie Zhang, Mengxue Liu, Hong Zhang, Ping Wang, Liujing Zhuang
{"title":"Artificial intelligence for brain disease diagnosis using electroencephalogram signals.","authors":"Shunuo Shang, Yingqian Shi, Yajie Zhang, Mengxue Liu, Hong Zhang, Ping Wang, Liujing Zhuang","doi":"10.1631/jzus.B2400103","DOIUrl":"10.1631/jzus.B2400103","url":null,"abstract":"<p><p>Brain signals refer to electrical signals or metabolic changes that occur as a consequence of brain cell activity. Among the various non-invasive measurement methods, electroencephalogram (EEG) stands out as a widely employed technique, providing valuable insights into brain patterns. The deviations observed in EEG reading serve as indicators of abnormal brain activity, which is associated with neurological diseases. Brain‒computer interface (BCI) systems enable the direct extraction and transmission of information from the human brain, facilitating interaction with external devices. Notably, the emergence of artificial intelligence (AI) has had a profound impact on the enhancement of precision and accuracy in BCI technology, thereby broadening the scope of research in this field. AI techniques, encompassing machine learning (ML) and deep learning (DL) models, have demonstrated remarkable success in classifying and predicting various brain diseases. This comprehensive review investigates the application of AI in EEG-based brain disease diagnosis, highlighting advancements in AI algorithms.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 10","pages":"914-940"},"PeriodicalIF":4.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494159/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phenolic-enabled nanotechnology: a new strategy for central nervous system disease therapy. 酚类纳米技术:治疗中枢神经系统疾病的新策略。
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-10-15 DOI: 10.1631/jzus.B2300839
Yuyi Zheng, Xiaojie Chen, Yi Wang, Zhong Chen, Di Wu
{"title":"Phenolic-enabled nanotechnology: a new strategy for central nervous system disease therapy.","authors":"Yuyi Zheng, Xiaojie Chen, Yi Wang, Zhong Chen, Di Wu","doi":"10.1631/jzus.B2300839","DOIUrl":"10.1631/jzus.B2300839","url":null,"abstract":"<p><p>Polyphenolic compounds have received tremendous attention in biomedicine because of their good biocompatibility and unique physicochemical properties. In recent years, phenolic-enabled nanotechnology (PEN) has become a hotspot of research in the medical field, and many promising studies have been reported, especially in the application of central nervous system (CNS) diseases. Polyphenolic compounds have superior anti-inflammatory and antioxidant properties, and can easily cross the blood‒brain barrier, as well as protect the nervous system from metabolic damage and promote learning and cognitive functions. However, although great advances have been made in this field, a comprehensive review regarding PEN-based nanomaterials for CNS therapy is lacking. A systematic summary of the basic mechanisms and synthetic strategies of PEN-based nanomaterials is beneficial for meeting the demand for the further development of novel treatments for CNS diseases. This review systematically introduces the fundamental physicochemical properties of PEN-based nanomaterials and their applications in the treatment of CNS diseases. We first describe the different ways in which polyphenols interact with other substances to form high-quality products with controlled sizes, shapes, compositions, and surface chemistry and functions. The application of PEN-based nanomaterials in the treatment of CNS diseases is then described, which provides a reference for subsequent research on the treatment of CNS diseases.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 10","pages":"890-913"},"PeriodicalIF":4.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494163/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Odor representation and coding by the mitral/tufted cells in the olfactory bulb. 嗅球中二尖瓣/簇细胞的气味表征和编码。
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-10-15 DOI: 10.1631/jzus.B2400051
Panke Wang, Shan Li, An'an Li
{"title":"Odor representation and coding by the mitral/tufted cells in the olfactory bulb.","authors":"Panke Wang, Shan Li, An'an Li","doi":"10.1631/jzus.B2400051","DOIUrl":"10.1631/jzus.B2400051","url":null,"abstract":"<p><p>The olfactory bulb (OB) is the first relay station in the olfactory system and functions as a crucial hub. It can represent odor information precisely and accurately in an ever-changing environment. As the only output neurons in the OB, mitral/tufted cells encode information such as odor identity and concentration. Recently, the neural strategies and mechanisms underlying odor representation and encoding in the OB have been investigated extensively. Here we review the main progress on this topic. We first review the neurons and circuits involved in odor representation, including the different cell types in the OB and the neural circuits within and beyond the OB. We will then discuss how two different coding strategies-spatial coding and temporal coding-work in the rodent OB. Finally, we discuss potential future directions for this research topic. Overall, this review provides a comprehensive description of our current understanding of how odor information is represented and encoded by mitral/tufted cells in the OB.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 10","pages":"824-840"},"PeriodicalIF":4.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perspectives in the investigation of Cockayne syndrome group B neurological disease: the utility of patient-derived brain organoid models. 研究科克恩综合征 B 组神经系统疾病的前景:源自患者的脑器官模型的实用性。
IF 4.7 3区 生物学
Journal of Zhejiang University SCIENCE B Pub Date : 2024-10-02 DOI: 10.1631/jzus.B2300712
Xintai Wang, Rui Zheng, Marina Dukhinova, Luxi Wang, Ying Shen, Zhijie Lin
{"title":"Perspectives in the investigation of Cockayne syndrome group B neurological disease: the utility of patient-derived brain organoid models.","authors":"Xintai Wang, Rui Zheng, Marina Dukhinova, Luxi Wang, Ying Shen, Zhijie Lin","doi":"10.1631/jzus.B2300712","DOIUrl":"10.1631/jzus.B2300712","url":null,"abstract":"<p><p>Cockayne syndrome (CS) group B (CSB), which results from mutations in the excision repair cross-complementation group 6 (<i>ERCC6</i>) genes, which produce CSB protein, is an autosomal recessive disease characterized by multiple progressive disorders including growth failure, microcephaly, skin photosensitivity, and premature aging. Clinical data show that brain atrophy, demyelination, and calcification are the main neurological manifestations of CS, which progress with time. Neuronal loss and calcification occur in various brain areas, particularly the cerebellum and basal ganglia, resulting in dyskinesia, ataxia, and limb tremors in CSB patients. However, the understanding of neurodevelopmental defects in CS has been constrained by the lack of significant neurodevelopmental and functional abnormalities observed in CSB-deficient mice. In this review, we focus on elucidating the protein structure and distribution of CSB and delve into the impact of CSB mutations on the development and function of the nervous system. In addition, we provide an overview of research models that have been instrumental in exploring CS disorders, with a forward-looking perspective on the substantial contributions that brain organoids are poised to further advance this field.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 10","pages":"878-889"},"PeriodicalIF":4.7,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494160/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信