Tiziana A Gelmi-Candusso, Andrew TM Chin, Connor A Thompson, Ashley AD McLaren, Tyler J Wheeldon, Brent R Patterson, Marie-Josée Fortin
{"title":"Dynamic connectivity assessment for a terrestrial predator in a metropolitan region","authors":"Tiziana A Gelmi-Candusso, Andrew TM Chin, Connor A Thompson, Ashley AD McLaren, Tyler J Wheeldon, Brent R Patterson, Marie-Josée Fortin","doi":"10.1002/fee.2633","DOIUrl":"10.1002/fee.2633","url":null,"abstract":"<p>Protecting wildlife movement corridors is critical for species conservation. Urban planning often aims to create corridors for animal movement through conservation initiatives. However, research on connectivity for urban wildlife is limited. Here, we assessed connectivity for coyotes (<i>Canis latrans</i>) dynamically across temporal scales and demographic traits, parametrized using the habitat selection of 27 global positioning system (GPS)-collared coyotes in the city of Toronto, Canada. The habitat selection models accounted for human population density, impervious area, vegetation density, and distance to different linear features. Results indicated that (1) vegetation-dense areas were key for connectivity in urban areas; (2) riverbanks, railways, and areas below power lines were predicted as movement corridors; and (3) commercial and industrial clusters strongly disrupted connectivity. Spatiotemporal differences in connectivity were associated with time of day and coyote social status but not with climate and biological seasonality or coyote age and sex. Residential roads were pivotal in the temporal dynamism of connectivity. The maintenance and enhancement of plant structural complexity along key infrastructure (for example, highways, waterways, and parking lots) should be considered when managing connectivity corridors in cities.</p>","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 4","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fee.2633","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139783588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Toward a predictable cask theory of species extinction assessment in the Anthropocene","authors":"Youhua Chen, Qiang Dai, Jin Zhou, Danni Tang, De-Zhu Li, Fuwen Wei, Xiangjiang Zhan","doi":"10.1002/fee.2714","DOIUrl":"10.1002/fee.2714","url":null,"abstract":"<p>Predicting species extinction is challenging in the context of climate change. The International Union for Conservation of Nature (IUCN) Red List of Threatened Species assesses species extinction risk by accounting for population size and global range of taxa, but this approach neglects the importance of genetic variability. Here, we propose a life strategy index (LSI) for predicting the extinction risks of species under climate change. The LSI is composed of three fundamental and independent components: namely, evolutionary potential, ecological potential, and colonization potential. The LSI constitutes a so-called “cask” theory of species extinction, which predicts that extinction likelihood is determined by the relative deficiency of any of the three components. The indicative variables used to construct the proposed LSI make the index applicable to assessments of (and predictions for) the extinction risk of different taxa in the face of climate change, which can inform management and conservation of imperiled species in a more scientific and precise manner.</p>","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 3","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139792187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lindsey L Thurman, Katrina Alger, Olivia LeDee, Laura M Thompson, Erik Hofmeister, J Michael Hudson, Alynn M Martin, Tracy A Melvin, Sarah H Olson, Mathieu Pruvot, Jason R Rohr, Jennifer A Szymanksi, Oscar A Aleuy, Benjamin Zuckerberg
{"title":"Disease-smart climate adaptation for wildlife management and conservation","authors":"Lindsey L Thurman, Katrina Alger, Olivia LeDee, Laura M Thompson, Erik Hofmeister, J Michael Hudson, Alynn M Martin, Tracy A Melvin, Sarah H Olson, Mathieu Pruvot, Jason R Rohr, Jennifer A Szymanksi, Oscar A Aleuy, Benjamin Zuckerberg","doi":"10.1002/fee.2716","DOIUrl":"https://doi.org/10.1002/fee.2716","url":null,"abstract":"<p>Climate change is a well-documented driver and threat multiplier of infectious disease in wildlife populations. However, wildlife disease management and climate-change adaptation have largely operated in isolation. To improve conservation outcomes, we consider the role of climate adaptation in initiating or exacerbating the transmission and spread of wildlife disease and the deleterious effects thereof, as illustrated through several case studies. We offer insights into best practices for disease-smart adaptation, including a checklist of key factors for assessing disease risks early in the climate adaptation process. By assessing risk, incorporating uncertainty, planning for change, and monitoring outcomes, natural resource managers and conservation practitioners can better prepare for and respond to wildlife disease threats in a changing climate.</p>","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 4","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fee.2716","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140820590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beyond COVID-19: ecotourism's role in ocean conservation targets","authors":"Octavio Aburto-Oropeza, Fabio Favoretto","doi":"10.1002/fee.2712","DOIUrl":"10.1002/fee.2712","url":null,"abstract":"","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 2","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139795215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Damien Olivier, Manuel Olán-Gonzalez, Hector Reyes Bonilla
{"title":"Ecotourism: more than preserving a disturbed environment","authors":"Damien Olivier, Manuel Olán-Gonzalez, Hector Reyes Bonilla","doi":"10.1002/fee.2713","DOIUrl":"10.1002/fee.2713","url":null,"abstract":"","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 2","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139795974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Uta Müller, Bethanne Bruninga-Socolar, Julia Brokaw, Daniel P Cariveau, Neal M Williams
{"title":"Integrating perspectives on ecology, conservation value, and policy of bee pollinator seed mixes","authors":"Uta Müller, Bethanne Bruninga-Socolar, Julia Brokaw, Daniel P Cariveau, Neal M Williams","doi":"10.1002/fee.2715","DOIUrl":"10.1002/fee.2715","url":null,"abstract":"<p>Wildflower plantings are an effective tool for mitigating floral resource scarcity, a major factor contributing to global declines in pollinator populations. However, the configuration of seed mixes for such plantings can encompass two different conservation goals: namely, the enhancement of a regulating ecosystem service (pollination) or the promotion of diverse pollinator communities, including rare or threatened species. According to which goal is prioritized, seed mixes consequently require different designs and implementation approaches. Here, we review common elements of wildflower seed mixes for native bees and highlight differences in application between the two conservation goals. Our focus on bees stems from agreement among different world regions to their functional value as pollinators and concern about recent global declines in their populations. We link the ecology of seed mixes with current challenges in US and EU policies supporting seed mix implementation. Finally, we advocate not only for clarity in goal setting, which will promote tailored seed mix design and application, but also for a reimagination of seed mix policies to increase their effectiveness for pollinator conservation.</p>","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 4","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139802302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carmen R Cid, Sharon K Collinge, Shahid Naeem, Catherine O'Riordan
{"title":"Elevating the human dimension in ecology—a call for action","authors":"Carmen R Cid, Sharon K Collinge, Shahid Naeem, Catherine O'Riordan","doi":"10.1002/fee.2704","DOIUrl":"https://doi.org/10.1002/fee.2704","url":null,"abstract":"<p>Humans have an enormous impact on ecosystems, biodiversity, and the services that nature provides. For the past 30 years, the Ecological Society of America (ESA) has expanded its emphasis on fundamental ecology to include the human dimensions of environmental change, in response to its members’ growing interest in the key environmental issues that define our times. These efforts include implementing pedagogical innovations in undergraduate education, expanding the human-focused content of ESA publications, facilitating career development, addressing the social and cultural dimensions of environmental issues, and providing mentoring programs that enhance the Society's role in human–environment interactions.</p><p>Since its founding over 100 years ago, ESA has defined its values and focused on being a trusted and accessible source of scientific knowledge regarding biological diversity and ecological systems. More recently, ESA's members have expanded their research questions to include the scientific foundations for effective environmental action and have emphasized providing a diverse community of ecologists with a supportive home to advance their careers. Now, a new ESA journal, Earth Stewardship, will extend the Society's publications to social–ecological researchers engaged in community-based stewardship and biocultural initiatives that co-produce solutions-oriented environmental stewardship across scales, from local to global. Other titles among ESA's existing journal portfolio are facilitating collections of articles that center not only on the importance of integrating cultural perspectives and diversity into research, but also on curricula to develop a well-trained environmental workforce.</p><p>Recently, ESA has inaugurated several sections and a chapter that mutually lead in integrating cultural, social, and human diversity into ecological research, teaching, and practice. ESA has also introduced new mechanisms in its governance to help ensure a more effective and cohesive ESA Council. These changes have fostered greater discussion among members on how best to improve the ways in which ESA can support ecologists of all backgrounds in their careers.</p><p>In 2020, in response to the Black Lives Matter movement, ESA appointed a Diversity, Equity, Inclusion, and Justice (DEIJ) Task Force and then in 2021, a permanent, separate ESA Diversity Committee to help implement the Task Force's recommendations. The DEIJ Task Force developed several recommendations from which the ESA Excellence in Ecology (EEE) Scholarship program emerged, to support early- to mid-career Society members. The EEE Scholarship program seeks to create a network of diverse, action-oriented ecologists whose professional activities center on effectively addressing today's environmental challenges through problem-solving. Now in its third cycle, the EEE Scholarship program has produced three cohorts of scholars who link their research to meeting the environmental needs of b","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fee.2704","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Izadora Nardi Gonzalez, João Vitor de Alcantara Viana
{"title":"Unusual nectar-thieving behavior in Brazil","authors":"Izadora Nardi Gonzalez, João Vitor de Alcantara Viana","doi":"10.1002/fee.2705","DOIUrl":"10.1002/fee.2705","url":null,"abstract":"<p>When an animal is observed visiting a flower, we tend to think of it as a mutualistic interaction, in which both participants benefit to some degree. However, not all such interactions are mutualisms, as in instances where one partner (the animal) benefits at the expense of the other partner (the plant). In pollination ecology, the lopsided beneficiaries of interactions like these are called nectar “robbers” or “thieves”. This seems to be the case for the bananaquit (<i>Coereba flaveola</i>), a member of the tanager family, seen here in a backyard in the city of Campinas, São Paulo, Brazil, consuming nectar from immature non-native <i>Ixora</i> flowers. Although bananaquits occasionally pierce mature flowers from the side to rob nectar (<i>Sci Rep</i> 2022; doi.org/10.1038/s41598-022-16237-9), the bird pictured here is mechanically opening a closed immature flower with its beak to access the nectar. Does the premature opening of a flower affect its development and the plant's reproductive success? Here, the bananaquit could be considered a nectar thief because of the temporal mismatch, given that the flower's pollen is unavailable or nonviable. Has this behavior spread through the local population of bananaquits, and how did it emerge? Is it a learned behavior by the bananaquit having observed a conspecific or else a different species? Is it a spontaneous behavior that arose independently in certain individuals? Physically opening an immature flower might represent a previously undocumented form of thieving. Further investigations are necessary to determine the relative gains and losses associated with this type of animal–plant interaction.</p>","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fee.2705","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139657053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sean M Johnson-Bice, Chloé Warret Rodrigues, James D Roth
{"title":"Canid competition for Arctic fox dens on the tundra","authors":"Sean M Johnson-Bice, Chloé Warret Rodrigues, James D Roth","doi":"10.1002/fee.2706","DOIUrl":"https://doi.org/10.1002/fee.2706","url":null,"abstract":"<p>Natal dens can be a limiting resource for canids on the Arctic tundra, as frozen ground inhibits easy burrow excavation during the spring. Near Churchill, Canada, tundra dens created by Arctic foxes (<i>Vulpes lagopus</i>) have transformed into ecological hotspots (<i>Sci Rep</i> 2016; doi.org/10.1038/srep24020). However, while monitoring these dens for many years, we have observed that both red foxes (<i>Vulpes vulpes</i>) and gray wolves (<i>Canis lupus</i>) are also competing for these sites.</p><p>In spring 2021, one den became the site of a fierce canid competition. The den figuratively switched “paws” between both fox species, first being occupied by a pair of red foxes from March through mid-April, then by a pair of Arctic foxes in May. But the return of a red fox in early June led to antagonism between the two fox species, pictured here. Simultaneously, during the volatile period of occupation by one or the other fox species, wolves regularly visited this den, with at least seven visits documented from mid-May to mid-June. On the day that the wolf photograph was captured, all three canid species were observed on camera at the same den within 6 hours of each other. Eventually, the red fox was the last observed canid using the den, despite aggressive defenses from the Arctic fox pair.</p><p>Arctic fox abundance in this area has declined steadily for several decades, largely due to climate-induced changes in prey availability and abundance (<i>Oecologia</i> 2023; doi.org/10.1007/s00442-023-05418-6). As climate change progresses, what will be the long-term fate of these Arctic fox–created hotspots? Antagonistic interactions like those pictured here may foreshadow a slow turnover of Arctic fox dens toward occupation by larger, more dominant competitors typically associated with patches of boreal forest at the low-Arctic tundra border.</p>","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fee.2706","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zachary G MacDonald, Thomas Gillespie, H Bradley Shaffer
{"title":"The highest butterfly in North America","authors":"Zachary G MacDonald, Thomas Gillespie, H Bradley Shaffer","doi":"10.1002/fee.2707","DOIUrl":"10.1002/fee.2707","url":null,"abstract":"<p>Despite the expansive old-growth forests of California's Sierra Nevada, its greatest diversity of butterflies is found in non-forested habitats, such as alpine meadows and fell-fields. These unique “sky island” habitats support a number of endemic butterflies, such as the Ivallda Arctic (<i>Oeneis chryxus ivallda</i>). Unlike other, more colorful butterflies in the region, the dark, cryptic coloration of <i>O c ivallda</i> is hypothesized to aid in both thermoregulation and camouflage in the relatively cool, rocky environments they inhabit. Faced with warming temperatures, some alpine butterfly populations may track their climatic niche and stay ahead of advancing treelines by moving up mountain slopes. However, many <i>O c ivallda</i> populations already occur at or near mountain summits, limiting their potential for elevational shifts. On 2 July 2022, we observed a previously unrecorded <i>O c ivallda</i> population at the summit of Mount Whitney (4421 m). Popular data repositories (eg GBIF and iNaturalist) confirmed that no other butterflies have been observed here. Mount Whitney is the highest mountain in the conterminous US, and all higher summits in Canada and Alaska are—at least for the moment—permanently snow- or glacier-covered, unsuitable for butterfly occupancy. This observation therefore marks what we believe is the highest extant butterfly population in North America. Of the 12 <i>O c ivallda</i> individuals observed during a one-hour survey, three were collected for whole-genome resequencing as part of the California Conservation Genomics Project (CCGP; https://www.ccgproject.org/). Two individuals are pictured, one from the summit of Mount Whitney (above) and the other from the summit of Mount Dana (3981 m; below), approximately 170 km to the northwest of Whitney. In light of this observation, alpine butterflies in the Sierra Nevada are clearly exhausting their potential for elevational shifts in the face of warming temperatures. Preventing extinction may require proactive conservation practices, such as translocation and even assisted migration. Detailed population genomic data, such as those produced by the CCGP, will help inform these efforts.</p>","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fee.2707","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139656121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}