{"title":"Multiorgan-on-a-chip for cancer drug pharmacokinetics-pharmacodynamics (PK-PD) modeling and simulations.","authors":"Abdurehman Eshete Mohammed, Filiz Kurucaovalı, Devrim Pesen Okvur","doi":"10.1007/s10928-024-09955-2","DOIUrl":"10.1007/s10928-024-09955-2","url":null,"abstract":"<p><p>Cancer is one of the most common and fatal diseases worldwide and kills millions of people every year. Cancer drug resistance, lack of efficacy, and safety are significant problems in cancer patients. A multiorgan-on-a-chip (MOC) device consisting of breast and liver compartments was designed with AutoCAD software. The MOC molds were printed by a Formlabs Form 2 3D printer. MDA-MB-231, HepG2, and MCF-10 A cells were used for the MOC experiments. The cell lines were cultured at 37 °C with 5% CO<sub>2,</sub> and cell viability was assessed via Alamar blue dye to generate pharmacodynamics (PD) data. Drug concentrations from the cell culture media were analyzed via Agilent 1260 Infinity II HPLC with a Waters Symmetry C18 column and used to generate pharmacokinetics (PK) data. The PK and PD data were modeled and simulated by Monolix and Simulix software, respectively. The safety and efficacy of drug dosing regimens were compared, and the best dosing regimens were selected. This research designed and fabricated a unique MOC consisting of liver and breast compartments that overcomes the need for sealing or assembling. It was used for PK-PD modeling and simulations, and its functionality was proven experimentally. The new MOC will be helpful in preclinical trials to evaluate the efficacy and safety of drugs.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 1","pages":"1"},"PeriodicalIF":2.2,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142770065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Janssen, Frank C Bennis, Marjon H Cnossen, Ron A A Mathôt
{"title":"Mixed effect estimation in deep compartment models: Variational methods outperform first-order approximations.","authors":"Alexander Janssen, Frank C Bennis, Marjon H Cnossen, Ron A A Mathôt","doi":"10.1007/s10928-024-09931-w","DOIUrl":"10.1007/s10928-024-09931-w","url":null,"abstract":"<p><p>This work focusses on extending the deep compartment model (DCM) framework to the estimation of mixed-effects. By introducing random effects, model predictions can be personalized based on drug measurements, enabling the testing of different treatment schedules on an individual basis. The performance of classical first-order (FO and FOCE) and machine learning based variational inference (VI) algorithms were compared in a simulation study. In VI, posterior distributions of the random variables are approximated using variational distributions whose parameters can be directly optimized. We found that variational approximations estimated using the path derivative gradient estimator version of VI were highly accurate. Models fit on the simulated data set using the FO and VI objective functions gave similar results, with accurate predictions of both the population parameters and covariate effects. Contrastingly, models fit using FOCE depicted erratic behaviour during optimization, and resulting parameter estimates were inaccurate. Finally, we compared the performance of the methods on two real-world data sets of haemophilia A patients who received standard half-life factor VIII concentrates during prophylactic and perioperative settings. Again, models fit using FO and VI depicted similar results, although some models fit using FO presented divergent results. Again, models fit using FOCE were unstable. In conclusion, we show that mixed-effects estimation using the DCM is feasible. VI performs conditional estimation, which might lead to more accurate results in more complex models compared to the FO method.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"797-808"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A review of the physiological effects of microgravity and innovative formulation for space travelers.","authors":"Jey Kumar Pachiyappan, Manali Patel, Parikshit Roychowdhury, Imrankhan Nizam, Raagul Seenivasan, Swathi Sudhakar, M R Jeyaprakash, Veera Venkata Satyanarayana Reddy Karri, Jayakumar Venkatesan, Priti Mehta, Sudhakar Kothandan, Indhumathi Thirugnanasambandham, Gowthamarajan Kuppusamy","doi":"10.1007/s10928-024-09938-3","DOIUrl":"10.1007/s10928-024-09938-3","url":null,"abstract":"<p><p>During the space travel mission, astronauts' physiological and psychological behavior will alter, and they will start consuming terrestrial drug products. However, factors such as microgravity, radiation exposure, temperature, humidity, strong vibrations, space debris, and other issues encountered, the drug product undergo instability This instability combined with physiological changes will affect the shelf life and diminish the pharmacokinetic and pharmacodynamic profile of the drug product. Consequently, the physicochemical changes will produce a toxic degradation product and a lesser potency dosage form which may result in reduced or no therapeutic action, so the astronaut consumes an additional dose to remain healthy. On long-duration missions like Mars, the drug product cannot be replaced, and the astronaut may relay on the available medications. Sometimes, radiation-induced impurities in the drug product will cause severe problems for the astronaut. So, this review article highlights the current state of various space-related factors affecting the drug product and provides a comprehensive summary of the physiological changes which primarly focus on absorption, distribution, metabolism, and excretion (ADME). Along with that, we insist some of the strategies like novel formulations, space medicine manufacturing from plants, and 3D printed medicine for astronauts in longer-duration missions. Such developments are anticipated to significantly contribute to new developments with applications in both human space exploration and on terrestrial healthcare.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"605-620"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Freya Bachmann, Gilbert Koch, Robert J Bauer, Britta Steffens, Gabor Szinnai, Marc Pfister, Johannes Schropp
{"title":"Computing optimal drug dosing regarding efficacy and safety: the enhanced OptiDose method in NONMEM.","authors":"Freya Bachmann, Gilbert Koch, Robert J Bauer, Britta Steffens, Gabor Szinnai, Marc Pfister, Johannes Schropp","doi":"10.1007/s10928-024-09940-9","DOIUrl":"10.1007/s10928-024-09940-9","url":null,"abstract":"<p><p>Recently, an optimal dosing algorithm (OptiDose) was developed to compute the optimal drug doses for any pharmacometrics model for a given dosing scenario. In the present work, we enhance the OptiDose concept to compute optimal drug dosing with respect to both efficacy and safety targets. Usually, these are not of equal importance, but one is a top priority, that needs to be satisfied, whereas the other is a secondary target and should be achieved as good as possible without failing the top priority target. Mathematically, this leads to state-constrained optimal control problems. In this paper, we elaborate how to set up such problems and transform them into classical unconstrained optimal control problems which can be solved in NONMEM. Three different optimal dosing tasks illustrate the impact of the proposed enhanced OptiDose method.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"919-934"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Kulesza, Claire Couty, Paul Lemarre, Craig J Thalhauser, Yanguang Cao
{"title":"Advancing cancer drug development with mechanistic mathematical modeling: bridging the gap between theory and practice.","authors":"Alexander Kulesza, Claire Couty, Paul Lemarre, Craig J Thalhauser, Yanguang Cao","doi":"10.1007/s10928-024-09930-x","DOIUrl":"10.1007/s10928-024-09930-x","url":null,"abstract":"<p><p>Quantitative predictive modeling of cancer growth, progression, and individual response to therapy is a rapidly growing field. Researchers from mathematical modeling, systems biology, pharmaceutical industry, and regulatory bodies, are collaboratively working on predictive models that could be applied for drug development and, ultimately, the clinical management of cancer patients. A plethora of modeling paradigms and approaches have emerged, making it challenging to compile a comprehensive review across all subdisciplines. It is therefore critical to gauge fundamental design aspects against requirements, and weigh opportunities and limitations of the different model types. In this review, we discuss three fundamental types of cancer models: space-structured models, ecological models, and immune system focused models. For each type, it is our goal to illustrate which mechanisms contribute to variability and heterogeneity in cancer growth and response, so that the appropriate architecture and complexity of a new model becomes clearer. We present the main features addressed by each of the three exemplary modeling types through a subjective collection of literature and illustrative exercises to facilitate inspiration and exchange, with a focus on providing a didactic rather than exhaustive overview. We close by imagining a future multi-scale model design to impact critical decisions in oncology drug development.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"581-604"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hsien-Wei Huang, Shengjia Wu, Ekram A Chowdhury, Dhaval K Shah
{"title":"Expansion of platform physiologically-based pharmacokinetic model for monoclonal antibodies towards different preclinical species: cats, sheep, and dogs.","authors":"Hsien-Wei Huang, Shengjia Wu, Ekram A Chowdhury, Dhaval K Shah","doi":"10.1007/s10928-023-09893-5","DOIUrl":"10.1007/s10928-023-09893-5","url":null,"abstract":"<p><p>Monoclonal antibodies (mAbs) are becoming an important therapeutic option in veterinary medicine, and understanding the pharmacokinetic (PK) of mAbs in higher-order animal species is also important for human drug development. To better understand the PK of mAbs in these animals, here we have expanded a platform physiological-based pharmacokinetic (PBPK) model to characterize the disposition of mAbs in three different preclinical species: cats, sheep, and dogs. We obtained PK data for mAbs and physiological parameters for the three different species from the literature. We were able to describe the PK of mAbs following intravenous (IV) or subcutaneous administration in cats, IV administration in sheep, and IV administration dogs reasonably well by fixing the physiological parameters and just estimating the parameters related to the binding of mAbs to the neonatal Fc receptor. The platform PBPK model presented here provides a quantitative tool to predict the plasma PK of mAbs in dogs, cats, and sheep. The model can also predict mAb PK in different tissues where the site of action might be located. As such, the mAb PBPK model presented here can facilitate the discovery, development, and preclinical-to-clinical translation of mAbs for veterinary and human medicine. The model can also be modified in the future to account for more detailed compartments for certain organs, different pathophysiology in the animals, and target-mediated drug disposition.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"621-638"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72014618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An asymptotic description of a basic FcRn-regulated clearance mechanism and its implications for PBPK modelling of large antibodies.","authors":"Csaba B Kátai, Shepard J Smithline, Craig J Thalhauser, Sieto Bosgra, Jeroen Elassaiss-Schaap","doi":"10.1007/s10928-024-09925-8","DOIUrl":"10.1007/s10928-024-09925-8","url":null,"abstract":"<p><p>A basic FcRn-regulated clearance mechanism is investigated using the method of matched asymptotic expansions. The broader aim of the work is to obtain further insight on the mechanism, thereby providing theoretical support for future pharmacologically-based pharmacokinetic modelling efforts. The corresponding governing equations are first non-dimensionalised and the order of magnitudes of the model parameters are assessed based on their values reported in the literature. Under the assumption of high FcRn-binding affinity, analytical approximations are derived that are valid over the characteristic phases of the problem. Additionally, relatively simple equations relating clearance and AUC to physiological model parameters are derived, which are valid over the longest characteristic time scale of the problem. For lower to moderate doses clearance is effectively linear, whereas for higher doses it is nonlinear. It is shown that for all doses sufficiently high the leading-order approximation for the IgG concentration in plasma, over the longest characteristic time scale, is independent of the initial dose. This is because IgG that is in 'excess' of FcRn is eliminated over a time scale much shorter than that of the terminal phase. In conclusion, analytical approximations of the basic FcRn mechanism have been derived using matched asymptotic expansions, leading to a simple equation relating clearance to FcRn binding affinity, the ratio of degradation and FcRn concentration, and the volumes of the system.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"759-783"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Davide Bindellini, Robin Michelet, Linda B S Aulin, Johanna Melin, Uta Neumann, Oliver Blankenstein, Wilhelm Huisinga, Martin J Whitaker, Richard Ross, Charlotte Kloft
{"title":"A quantitative modeling framework to understand the physiology of the hypothalamic-pituitary-adrenal axis and interaction with cortisol replacement therapy.","authors":"Davide Bindellini, Robin Michelet, Linda B S Aulin, Johanna Melin, Uta Neumann, Oliver Blankenstein, Wilhelm Huisinga, Martin J Whitaker, Richard Ross, Charlotte Kloft","doi":"10.1007/s10928-024-09934-7","DOIUrl":"10.1007/s10928-024-09934-7","url":null,"abstract":"<p><p>Congenital adrenal hyperplasia (CAH) is characterized by impaired adrenal cortisol production. Hydrocortisone (synthetic cortisol) is the drug-of-choice for cortisol replacement therapy, aiming to mimic physiological cortisol circadian rhythm. The hypothalamic-pituitary-adrenal (HPA) axis controls cortisol production through the pituitary adrenocorticotropic hormone (ACTH) and feedback mechanisms. The aim of this study was to quantify key mechanisms involved in the HPA axis activity regulation and their interaction with hydrocortisone therapy. Data from 30 healthy volunteers was leveraged: Endogenous ACTH and cortisol concentrations without any intervention as well as cortisol concentrations measured after dexamethasone suppression and single dose administration of (i) 0.5-10 mg hydrocortisone as granules, (ii) 20 mg hydrocortisone as granules and intravenous bolus. A stepwise model development workflow was used: A newly developed model for endogenous ACTH and cortisol was merged with a refined hydrocortisone pharmacokinetic model. The joint model was used to simulate ACTH and cortisol trajectories in CAH patients with varying degrees of enzyme deficiency, with or without hydrocortisone administration, and healthy individuals. Time-dependent ACTH-driven endogenous cortisol production and cortisol-mediated feedback inhibition of ACTH secretion processes were quantified and implemented in the model. Comparison of simulated ACTH and cortisol trajectories between CAH patients and healthy individuals showed the importance of administering hydrocortisone before morning ACTH secretion peak time to suppress ACTH overproduction observed in untreated CAH patients. The developed framework allowed to gain insights on the physiological mechanisms of the HPA axis regulation, its perturbations in CAH and interaction with hydrocortisone administration, paving the way towards cortisol replacement therapy optimization.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"809-824"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579075/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Time Scale Calculus: a new approach to multi-dose pharmacokinetic modeling.","authors":"José Ricardo Arteaga-Bejarano, Santiago Torres","doi":"10.1007/s10928-024-09920-z","DOIUrl":"10.1007/s10928-024-09920-z","url":null,"abstract":"<p><p>In this paper, we use Time Scale Calculus (TSC) to formulate and solve pharmacokinetic models exploring multiple dose dynamics. TSC is a mathematical framework that allows the modeling of dynamical systems comprising continuous and discrete processes. This characteristic makes TSC particularly suited for multi-dose pharmacokinetic problems, which inherently feature a blend of continuous processes (such as absorption, metabolization, and elimination) and discrete events (drug intake). We use this toolkit to derive analytical expressions for blood concentration trajectories under various multi-dose regimens across several flagship pharmacokinetic models. We demonstrate that this mathematical framework furnishes an alternative and simplified way to model and retrieve analytical solutions for multi-dose dynamics. For instance, it enables the study of blood concentration responses to arbitrary dose regimens and facilitates the characterization of the long-term behavior of the solutions, such as their steady state.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"825-839"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579191/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alberto Ippolito, Hanwen Wang, Yu Zhang, Vahideh Vakil, Aleksander S Popel
{"title":"Virtual clinical trials via a QSP immuno-oncology model to simulate the response to a conditionally activated PD-L1 targeting antibody in NSCLC.","authors":"Alberto Ippolito, Hanwen Wang, Yu Zhang, Vahideh Vakil, Aleksander S Popel","doi":"10.1007/s10928-024-09928-5","DOIUrl":"10.1007/s10928-024-09928-5","url":null,"abstract":"<p><p>Recently, immunotherapies for antitumoral response have adopted conditionally activated molecules with the objective of reducing systemic toxicity. Amongst these are conditionally activated antibodies, such as PROBODY® activatable therapeutics (Pb-Tx), engineered to be proteolytically activated by proteases found locally in the tumor microenvironment (TME). These PROBODY® therapeutics molecules have shown potential as PD-L1 checkpoint inhibitors in several cancer types, including both effectiveness and locality of action of the molecule as shown by several clinical trials and imaging studies. Here, we perform an exploratory study using our recently published quantitative systems pharmacology model, previously validated for triple-negative breast cancer (TNBC), to computationally predict the effectiveness and targeting specificity of a PROBODY® therapeutics drug compared to the non-modified antibody. We begin with the analysis of anti-PD-L1 immunotherapy in non-small cell lung cancer (NSCLC). As a first contribution, we have improved previous virtual patient selection methods using the omics data provided by the iAtlas database portal compared to methods previously published in literature. Furthermore, our results suggest that masking an antibody maintains its efficacy while improving the localization of active therapeutic in the TME. Additionally, we generalize the model by evaluating the dependence of the response to the tumor mutational burden, independently of cancer type, as well as to other key biomarkers, such as CD8/Treg Tcell and M1/M2 macrophage ratio. While our results are obtained from simulations on NSCLC, our findings are generalizable to other cancer types and suggest that an effective and highly selective conditionally activated PROBODY® therapeutics molecule is a feasible option.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"747-757"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}