Alberto Ippolito, Hanwen Wang, Yu Zhang, Vahideh Vakil, Aleksander S Popel
{"title":"Virtual clinical trials via a QSP immuno-oncology model to simulate the response to a conditionally activated PD-L1 targeting antibody in NSCLC.","authors":"Alberto Ippolito, Hanwen Wang, Yu Zhang, Vahideh Vakil, Aleksander S Popel","doi":"10.1007/s10928-024-09928-5","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, immunotherapies for antitumoral response have adopted conditionally activated molecules with the objective of reducing systemic toxicity. Amongst these are conditionally activated antibodies, such as PROBODY® activatable therapeutics (Pb-Tx), engineered to be proteolytically activated by proteases found locally in the tumor microenvironment (TME). These PROBODY® therapeutics molecules have shown potential as PD-L1 checkpoint inhibitors in several cancer types, including both effectiveness and locality of action of the molecule as shown by several clinical trials and imaging studies. Here, we perform an exploratory study using our recently published quantitative systems pharmacology model, previously validated for triple-negative breast cancer (TNBC), to computationally predict the effectiveness and targeting specificity of a PROBODY® therapeutics drug compared to the non-modified antibody. We begin with the analysis of anti-PD-L1 immunotherapy in non-small cell lung cancer (NSCLC). As a first contribution, we have improved previous virtual patient selection methods using the omics data provided by the iAtlas database portal compared to methods previously published in literature. Furthermore, our results suggest that masking an antibody maintains its efficacy while improving the localization of active therapeutic in the TME. Additionally, we generalize the model by evaluating the dependence of the response to the tumor mutational burden, independently of cancer type, as well as to other key biomarkers, such as CD8/Treg Tcell and M1/M2 macrophage ratio. While our results are obtained from simulations on NSCLC, our findings are generalizable to other cancer types and suggest that an effective and highly selective conditionally activated PROBODY® therapeutics molecule is a feasible option.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"747-757"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579200/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-024-09928-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, immunotherapies for antitumoral response have adopted conditionally activated molecules with the objective of reducing systemic toxicity. Amongst these are conditionally activated antibodies, such as PROBODY® activatable therapeutics (Pb-Tx), engineered to be proteolytically activated by proteases found locally in the tumor microenvironment (TME). These PROBODY® therapeutics molecules have shown potential as PD-L1 checkpoint inhibitors in several cancer types, including both effectiveness and locality of action of the molecule as shown by several clinical trials and imaging studies. Here, we perform an exploratory study using our recently published quantitative systems pharmacology model, previously validated for triple-negative breast cancer (TNBC), to computationally predict the effectiveness and targeting specificity of a PROBODY® therapeutics drug compared to the non-modified antibody. We begin with the analysis of anti-PD-L1 immunotherapy in non-small cell lung cancer (NSCLC). As a first contribution, we have improved previous virtual patient selection methods using the omics data provided by the iAtlas database portal compared to methods previously published in literature. Furthermore, our results suggest that masking an antibody maintains its efficacy while improving the localization of active therapeutic in the TME. Additionally, we generalize the model by evaluating the dependence of the response to the tumor mutational burden, independently of cancer type, as well as to other key biomarkers, such as CD8/Treg Tcell and M1/M2 macrophage ratio. While our results are obtained from simulations on NSCLC, our findings are generalizable to other cancer types and suggest that an effective and highly selective conditionally activated PROBODY® therapeutics molecule is a feasible option.
期刊介绍:
Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.