Multiorgan-on-a-chip for cancer drug pharmacokinetics-pharmacodynamics (PK-PD) modeling and simulations.

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Abdurehman Eshete Mohammed, Filiz Kurucaovalı, Devrim Pesen Okvur
{"title":"Multiorgan-on-a-chip for cancer drug pharmacokinetics-pharmacodynamics (PK-PD) modeling and simulations.","authors":"Abdurehman Eshete Mohammed, Filiz Kurucaovalı, Devrim Pesen Okvur","doi":"10.1007/s10928-024-09955-2","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is one of the most common and fatal diseases worldwide and kills millions of people every year. Cancer drug resistance, lack of efficacy, and safety are significant problems in cancer patients. A multiorgan-on-a-chip (MOC) device consisting of breast and liver compartments was designed with AutoCAD software. The MOC molds were printed by a Formlabs Form 2 3D printer. MDA-MB-231, HepG2, and MCF-10 A cells were used for the MOC experiments. The cell lines were cultured at 37 °C with 5% CO<sub>2,</sub> and cell viability was assessed via Alamar blue dye to generate pharmacodynamics (PD) data. Drug concentrations from the cell culture media were analyzed via Agilent 1260 Infinity II HPLC with a Waters Symmetry C18 column and used to generate pharmacokinetics (PK) data. The PK and PD data were modeled and simulated by Monolix and Simulix software, respectively. The safety and efficacy of drug dosing regimens were compared, and the best dosing regimens were selected. This research designed and fabricated a unique MOC consisting of liver and breast compartments that overcomes the need for sealing or assembling. It was used for PK-PD modeling and simulations, and its functionality was proven experimentally. The new MOC will be helpful in preclinical trials to evaluate the efficacy and safety of drugs.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 1","pages":"1"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-024-09955-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer is one of the most common and fatal diseases worldwide and kills millions of people every year. Cancer drug resistance, lack of efficacy, and safety are significant problems in cancer patients. A multiorgan-on-a-chip (MOC) device consisting of breast and liver compartments was designed with AutoCAD software. The MOC molds were printed by a Formlabs Form 2 3D printer. MDA-MB-231, HepG2, and MCF-10 A cells were used for the MOC experiments. The cell lines were cultured at 37 °C with 5% CO2, and cell viability was assessed via Alamar blue dye to generate pharmacodynamics (PD) data. Drug concentrations from the cell culture media were analyzed via Agilent 1260 Infinity II HPLC with a Waters Symmetry C18 column and used to generate pharmacokinetics (PK) data. The PK and PD data were modeled and simulated by Monolix and Simulix software, respectively. The safety and efficacy of drug dosing regimens were compared, and the best dosing regimens were selected. This research designed and fabricated a unique MOC consisting of liver and breast compartments that overcomes the need for sealing or assembling. It was used for PK-PD modeling and simulations, and its functionality was proven experimentally. The new MOC will be helpful in preclinical trials to evaluate the efficacy and safety of drugs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信