{"title":"Multiorgan-on-a-chip for cancer drug pharmacokinetics-pharmacodynamics (PK-PD) modeling and simulations.","authors":"Abdurehman Eshete Mohammed, Filiz Kurucaovalı, Devrim Pesen Okvur","doi":"10.1007/s10928-024-09955-2","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is one of the most common and fatal diseases worldwide and kills millions of people every year. Cancer drug resistance, lack of efficacy, and safety are significant problems in cancer patients. A multiorgan-on-a-chip (MOC) device consisting of breast and liver compartments was designed with AutoCAD software. The MOC molds were printed by a Formlabs Form 2 3D printer. MDA-MB-231, HepG2, and MCF-10 A cells were used for the MOC experiments. The cell lines were cultured at 37 °C with 5% CO<sub>2,</sub> and cell viability was assessed via Alamar blue dye to generate pharmacodynamics (PD) data. Drug concentrations from the cell culture media were analyzed via Agilent 1260 Infinity II HPLC with a Waters Symmetry C18 column and used to generate pharmacokinetics (PK) data. The PK and PD data were modeled and simulated by Monolix and Simulix software, respectively. The safety and efficacy of drug dosing regimens were compared, and the best dosing regimens were selected. This research designed and fabricated a unique MOC consisting of liver and breast compartments that overcomes the need for sealing or assembling. It was used for PK-PD modeling and simulations, and its functionality was proven experimentally. The new MOC will be helpful in preclinical trials to evaluate the efficacy and safety of drugs.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 1","pages":"1"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-024-09955-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer is one of the most common and fatal diseases worldwide and kills millions of people every year. Cancer drug resistance, lack of efficacy, and safety are significant problems in cancer patients. A multiorgan-on-a-chip (MOC) device consisting of breast and liver compartments was designed with AutoCAD software. The MOC molds were printed by a Formlabs Form 2 3D printer. MDA-MB-231, HepG2, and MCF-10 A cells were used for the MOC experiments. The cell lines were cultured at 37 °C with 5% CO2, and cell viability was assessed via Alamar blue dye to generate pharmacodynamics (PD) data. Drug concentrations from the cell culture media were analyzed via Agilent 1260 Infinity II HPLC with a Waters Symmetry C18 column and used to generate pharmacokinetics (PK) data. The PK and PD data were modeled and simulated by Monolix and Simulix software, respectively. The safety and efficacy of drug dosing regimens were compared, and the best dosing regimens were selected. This research designed and fabricated a unique MOC consisting of liver and breast compartments that overcomes the need for sealing or assembling. It was used for PK-PD modeling and simulations, and its functionality was proven experimentally. The new MOC will be helpful in preclinical trials to evaluate the efficacy and safety of drugs.
期刊介绍:
Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.