Journal of physiology and biochemistry最新文献

筛选
英文 中文
Isoliquiritigenin in combination with visceral adipose tissue and related markers as a predictive tool for nonalcoholic fatty liver disease. 异质尿酸原与内脏脂肪组织及相关标志物联合作为非酒精性脂肪肝疾病的预测工具
IF 3.7 3区 生物学
Journal of physiology and biochemistry Pub Date : 2024-08-01 Epub Date: 2023-11-24 DOI: 10.1007/s13105-023-00998-6
Paola Mogna-Peláez, Ana Romo-Hualde, José I Riezu-Boj, Fermin I Milagro, David Muñoz-Prieto, José I Herrero, Mariana Elorz, Alberto Benito-Boillos, J Ignacio Monreal, Josep A Tur, Alfredo Martínez, Itziar Abete, M Angeles Zulet
{"title":"Isoliquiritigenin in combination with visceral adipose tissue and related markers as a predictive tool for nonalcoholic fatty liver disease.","authors":"Paola Mogna-Peláez, Ana Romo-Hualde, José I Riezu-Boj, Fermin I Milagro, David Muñoz-Prieto, José I Herrero, Mariana Elorz, Alberto Benito-Boillos, J Ignacio Monreal, Josep A Tur, Alfredo Martínez, Itziar Abete, M Angeles Zulet","doi":"10.1007/s13105-023-00998-6","DOIUrl":"10.1007/s13105-023-00998-6","url":null,"abstract":"<p><p>Nonalcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease in the world. New non-invasive diagnostic tools are needed to promptly treat this disease and avoid its complications. This study aimed to find key metabolites and related variables that could be used to predict and diagnose NAFLD. Ninety-eight subjects with NAFLD and 45 controls from the Fatty Liver in Obesity (FLiO) Study (NCT03183193) were analyzed. NAFLD was diagnosed and graded by ultrasound and classified into two groups: 0 (controls) and ≥ 1 (NAFLD). Hepatic status was additionally assessed through magnetic resonance imaging (MRI), elastography, and determination of transaminases. Anthropometry, body composition (DXA), biochemical parameters, and lifestyle factors were evaluated as well. Non-targeted metabolomics of serum was performed with high-performance liquid chromatography coupled to time-of-flight mass spectrometry (HPLC-TOF-MS). Isoliquiritigenin (ISO) had the strongest association with NAFLD out of the determinant metabolites. Individuals with higher concentrations of ISO had healthier metabolic and hepatic status and were less likely to have NAFLD (OR 0.13). Receiver operating characteristic (ROC) curves demonstrated the predictive power of ISO in panel combination with other NAFLD and IR-related variables, such as visceral adipose tissue (VAT) (AUROC 0.972), adiponectin (AUROC 0.917), plasmatic glucose (AUROC 0.817), and CK18-M30 (AUROC 0.810). Individuals with lower levels of ISO have from 71 to 82% more risk of presenting NAFLD compared to individuals with higher levels. Metabolites such as ISO, in combination with visceral adipose tissue, IR, and related markers, constitute a potential non-invasive tool to predict and diagnose NAFLD.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"639-653"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502611/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138299318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TNFAIP1 promotes macrophage lipid accumulation and accelerates the development of atherosclerosis through the LEENE/FoxO1/ABCA1 pathway. TNFAIP1 通过 LEENE/FoxO1/ABCA1 通路促进巨噬细胞脂质积累并加速动脉粥样硬化的发展。
IF 3.7 3区 生物学
Journal of physiology and biochemistry Pub Date : 2024-08-01 Epub Date: 2024-06-15 DOI: 10.1007/s13105-024-01018-x
Can Xu, Jun Meng, Xiao-Hua Yu, Ru-Jing Wang, Mei-Ling Li, Shan-Hui Yin, Gang Wang
{"title":"TNFAIP1 promotes macrophage lipid accumulation and accelerates the development of atherosclerosis through the LEENE/FoxO1/ABCA1 pathway.","authors":"Can Xu, Jun Meng, Xiao-Hua Yu, Ru-Jing Wang, Mei-Ling Li, Shan-Hui Yin, Gang Wang","doi":"10.1007/s13105-024-01018-x","DOIUrl":"10.1007/s13105-024-01018-x","url":null,"abstract":"<p><p>Macrophage lipid accumulation is a critical contributor to foam cell formation and atherosclerosis. Tumor necrosis factor-α-induced protein 1 (TNFAIP1) is closely associated with cardiovascular disease. However, its role and molecular mechanisms in atherogenesis remain unclear. TNFAIP1 was knocked down in THP-1 macrophage-derived foam cells and apolipoprotein-deficient (apoE<sup>-/-</sup>) mice using lentiviral vector. The expression of lncRNA enhancing endothelial nitric oxide synthase expression (LEENE), Forkhead box O1 (FoxO1) and ATP binding cassette transporter A1 (ABCA1) was evaluated by qRT-PCR and/or western blot. Lipid accumulation in macrophage was assessed by high-performance liquid chromatography and Oil red O staining. RNA immunoprecipitation and RNA pull-down assay were performed to verify the interaction between LEENE and FoxO1 protein. Atherosclerotic lesions were analyzed using HE, Oil red O and Masson staining. Our results showed that TNFAIP1 was significantly increased in THP-1 macrophages loaded with oxidized low-density lipoprotein. Knockdown of TNFAIP1 enhanced LEENE expression, promoted the direct interaction of LEENE with FoxO1 protein, stimulated FoxO1 protein degradation through the proteasome pathway, induced ABCA1 transcription, and finally suppressed lipid accumulation in THP-1 macrophage-derived foam cells. TNFAIP1 knockdown also up-regulated ABCA1 expression, improved plasma lipid profiles, enhanced the efficiency of reverse cholesterol transport and attenuated lesion area in apoE<sup>-/-</sup> mice. Taken together, these results provide the first direct evidence that TNFAIP1 aggravates atherosclerosis by promoting macrophage lipid accumulation via the LEENE/FoxO1/ABCA1 signaling pathway. TNFAIP1 may represent a promising therapeutic target for atherosclerotic cardiovascular disease.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"523-539"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of miR-155-5p signalling via 5-ASA for the prevention of high microsatellite instability: an in vitro study using human epithelial cell lines. 通过 5-ASA 调节 miR-155-5p 信号以预防高微卫星不稳定性:一项利用人体上皮细胞系进行的体外研究。
IF 3.7 3区 生物学
Journal of physiology and biochemistry Pub Date : 2024-08-01 Epub Date: 2024-07-10 DOI: 10.1007/s13105-024-01033-y
Monika Adamowicz, Joanna Abramczyk, Ewa Kilanczyk, Piotr Milkiewicz, Alicja Łaba, Malgorzata Milkiewicz, Agnieszka Kempinska-Podhorodecka
{"title":"Modulation of miR-155-5p signalling via 5-ASA for the prevention of high microsatellite instability: an in vitro study using human epithelial cell lines.","authors":"Monika Adamowicz, Joanna Abramczyk, Ewa Kilanczyk, Piotr Milkiewicz, Alicja Łaba, Malgorzata Milkiewicz, Agnieszka Kempinska-Podhorodecka","doi":"10.1007/s13105-024-01033-y","DOIUrl":"10.1007/s13105-024-01033-y","url":null,"abstract":"<p><p>5-aminosalicylic acid (5-ASA) is a first-line treatment for maintaining colitis remission. It is a highly effective, safe, and well-tolerated drug with anti-inflammatory and chemo-preventive properties. While patients with primary sclerosing cholangitis (PSC) with concomitant ulcerative colitis are treated with 5-ASA, the molecular mechanisms underlying the drug's chemo-preventive effects are not entirely understood. We previously reported that bile acids and lipopolysaccharide-induced miR-155 expression was associated with downregulating mismatch repair (MMR) proteins in CACO-2 cell lines. Therefore, in this investigation, a set of in vitro functional studies was performed to show the possible mechanisms behind the epigenetic relationship between miR-155 and 5-ASA's prevention of high microsatellite instability (MSI-H). In transient transfection with miR-155Mimic, which behaves like endogenous miRNA, we confirmed the relationships between miR-155 and its target MMR in three human intestinal epithelial cell lines: CACO-2, NCM460D and HT-29. We have shown, for the first time, that 5-ASA modulates MLH1, MSH2, MSH6 in miR-155 transfected cells. These findings underline that chemoprotective 5-ASA therapy can effectively attenuate the expression of miR-155 and potentially prevent a development of MSI-H in a subset of colorectal cancers associated with PSC.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"573-583"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502576/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of virgin olive oil as spreadable preparation on atherosclerosis compared to dairy butter in Apoe-deficient mice. 初榨橄榄油与牛奶黄油相比对载脂蛋白缺乏症小鼠动脉粥样硬化的影响。
IF 3.7 3区 生物学
Journal of physiology and biochemistry Pub Date : 2024-08-01 Epub Date: 2024-05-24 DOI: 10.1007/s13105-024-01029-8
Roberto Martínez-Beamonte, Cristina Barranquero, Sonia Gascón, Juan Mariño, Carmen Arnal, Gloria Estopañán, María Jesús Rodriguez-Yoldi, Joaquín Carlos Surra, Olga Martín-Belloso, Isabel Odriozola-Serrano, Israel Orman, Jose Carlos Segovia, Jesús Osada, María Ángeles Navarro
{"title":"Effect of virgin olive oil as spreadable preparation on atherosclerosis compared to dairy butter in Apoe-deficient mice.","authors":"Roberto Martínez-Beamonte, Cristina Barranquero, Sonia Gascón, Juan Mariño, Carmen Arnal, Gloria Estopañán, María Jesús Rodriguez-Yoldi, Joaquín Carlos Surra, Olga Martín-Belloso, Isabel Odriozola-Serrano, Israel Orman, Jose Carlos Segovia, Jesús Osada, María Ángeles Navarro","doi":"10.1007/s13105-024-01029-8","DOIUrl":"10.1007/s13105-024-01029-8","url":null,"abstract":"<p><p>Olive oil is the main source of lipid energy in the Mediterranean diet and there is strong evidence of its health benefits. The effect of extra virgin olive oil (EVOO) in the form of a preparation of spreadable virgin olive oil (S-VO) on the progression of atheroma plaques was investigated in Apoe-deficient mice, a model of accelerated atherosclerosis.</p><p><strong>Methods: </strong>Two isocaloric Western purified diets containing 20% fat, either as S-VO or as dairy butter, were used to feed 28 males and 16 females of two-month-old Apoe-deficient mice for 12 weeks. S-VO was prepared by blending more than 75% virgin olive oil with other vegetal natural fat to obtain a solid fat. Plasma total cholesterol, triglycerides and HDL cholesterol were measured. Hepatic lipid droplets were analyzed. Areas of atherosclerotic aortic lesions were quantified in cross-sectional images of the proximal aorta and en face analysis of the whole aorta.</p><p><strong>Results: </strong>Total plasma cholesterol was increased in mice on the butter-supplemented diet in both female and male mice compared to S-VO, and the ratio of TC/HDL-cholesterol was significantly lower in S-VO than in the butter diet, although only in males, and no differences in plasma triglycerides were observed. No significant differences in hepatic lipid droplets were observed between diets in either sex. Aortic lesion areas were significantly higher in mice consuming the butter versus the S-VO diet in both sexes.</p><p><strong>Conclusion: </strong>Extra virgin olive oil prepared in spreadable form maintained the delay in atheroma plaque progression compared to butter.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"671-683"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141086949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic reprogramming of mtDNA and its etiology in mitochondrial diseases. 线粒体疾病中 mtDNA 的表观遗传重编程及其病因。
IF 3.4 3区 生物学
Journal of physiology and biochemistry Pub Date : 2024-06-12 DOI: 10.1007/s13105-024-01032-z
Anil Kumar, Anita Choudhary, Anjana Munshi
{"title":"Epigenetic reprogramming of mtDNA and its etiology in mitochondrial diseases.","authors":"Anil Kumar, Anita Choudhary, Anjana Munshi","doi":"10.1007/s13105-024-01032-z","DOIUrl":"https://doi.org/10.1007/s13105-024-01032-z","url":null,"abstract":"<p><p>Mitochondrial functionality and its regulation are tightly controlled through a balanced crosstalk between the nuclear and mitochondrial DNA interactions. Epigenetic signatures like methylation, hydroxymethylation and miRNAs have been reported in mitochondria. In addition, epigenetic signatures encoded by nuclear DNA are also imported to mitochondria and regulate the gene expression dynamics of the mitochondrial genome. Alteration in the interplay of these epigenetic modifications results in the pathogenesis of various disorders like neurodegenerative, cardiovascular, metabolic disorders, cancer, aging and senescence. These modifications result in higher ROS production, increased mitochondrial copy number and disruption in the replication process. In addition, various miRNAs are associated with regulating and expressing important mitochondrial gene families like COX, OXPHOS, ND and DNMT. Epigenetic changes are reversible and therefore therapeutic interventions like changing the target modifications can be utilized to repair or prevent mitochondrial insufficiency by reversing the changed gene expression. Identifying these mitochondrial-specific epigenetic signatures has the potential for early diagnosis and treatment responses for many diseases caused by mitochondrial dysfunction. In the present review, different mitoepigenetic modifications have been discussed in association with the development of various diseases by focusing on alteration in gene expression and dysregulation of specific signaling pathways. However, this area is still in its infancy and future research is warranted to draw better conclusions.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of aerobic and resistant exercises on the lipid profile in healthy women: a systematic review and meta-analysis. 有氧运动和耐力运动对健康女性血脂状况的影响:系统回顾和荟萃分析。
IF 3.4 3区 生物学
Journal of physiology and biochemistry Pub Date : 2024-06-12 DOI: 10.1007/s13105-024-01030-1
Hossein Pourmontaseri, Mojtaba Farjam, Azizallah Dehghan, Aliasghar Karimi, Maryam Akbari, Saeed Shahabi, Peyman Nowrouzi-Sohrabi, Mehrdad Estakhr, Reza Tabrizi, Fariba Ahmadizar
{"title":"The effects of aerobic and resistant exercises on the lipid profile in healthy women: a systematic review and meta-analysis.","authors":"Hossein Pourmontaseri, Mojtaba Farjam, Azizallah Dehghan, Aliasghar Karimi, Maryam Akbari, Saeed Shahabi, Peyman Nowrouzi-Sohrabi, Mehrdad Estakhr, Reza Tabrizi, Fariba Ahmadizar","doi":"10.1007/s13105-024-01030-1","DOIUrl":"https://doi.org/10.1007/s13105-024-01030-1","url":null,"abstract":"<p><p>Exercise can have a wide range of health benefits, including improving blood lipid profiles. For women to achieve optimal cardiovascular health, it is vital to determine the effect of exercise on their health and whether different exercise intensities can affect their blood lipid profile. A systematic review and meta-analysis were conducted to examine the effects of exercise on improving the lipid profile of healthy women. A database search was conducted using PubMed, Google Scholar, Embase, Scopus, and Web of Science from inception until July 2, 2021, for randomized controlled trials (RCTs) investigating exercise's effects on healthy women's blood lipid profiles. A total of 10 eligible articles (or 17 trials) with 576 participants were identified as eligible for the study. Overall, the meta-analysis shows that physical activity significantly improved total cholesterol (TC), triglycerides (TG), and high-density lipoprotein (HDL-C) levels: TC [WMD = -5.77 mg/dL, 95% CI: -10.41, -1.13, P < 0.01]; TG [WMD = -5.60 mg/dL, 95% CI: -8.96, -2.23, P < 0.01]; HDL [WMD = 4.49 mg/dL, 95% CI: 0.33, 8.65, P = 0.03]. Additionally, sub-group analyses indicated that combined exercise training improved TG and TC (p 0.05), and aerobic exercise significantly increased HDL. In this study, physical activity appears to be one of the most effective non-pharmacological means for improving HDL, TG, and TC in healthy women. In terms of TG and TC, CT was the most effective.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstracts of the XXXIII Congress of the Spanish Society of Nutrition / Sociedad Española de Nutrición (SEÑ) and X Meeting of Young Researchers. 西班牙营养学会(SEÑ)第三十三届大会暨第十届青年研究人员会议摘要。
IF 3.7 3区 生物学
Journal of physiology and biochemistry Pub Date : 2024-06-10 DOI: 10.1007/s13105-024-01031-0
{"title":"Abstracts of the XXXIII Congress of the Spanish Society of Nutrition / Sociedad Española de Nutrición (SEÑ) and X Meeting of Young Researchers.","authors":"","doi":"10.1007/s13105-024-01031-0","DOIUrl":"10.1007/s13105-024-01031-0","url":null,"abstract":"","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"1-95"},"PeriodicalIF":3.7,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141296286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The glucose transporter GLUT12, a new actor in obesity and cancer. 葡萄糖转运体 GLUT12,肥胖症和癌症的新角色。
IF 3.4 3区 生物学
Journal of physiology and biochemistry Pub Date : 2024-05-10 DOI: 10.1007/s13105-024-01028-9
Miguel Burgos, Eva Gil-Iturbe, Adrián Idoate-Bayón, Rosa Castilla-Madrigal, Maria J Moreno-Aliaga, M Pilar Lostao
{"title":"The glucose transporter GLUT12, a new actor in obesity and cancer.","authors":"Miguel Burgos, Eva Gil-Iturbe, Adrián Idoate-Bayón, Rosa Castilla-Madrigal, Maria J Moreno-Aliaga, M Pilar Lostao","doi":"10.1007/s13105-024-01028-9","DOIUrl":"https://doi.org/10.1007/s13105-024-01028-9","url":null,"abstract":"<p><p>Obesity constitutes a global health epidemic which worsens the main leading death causes such as type 2 diabetes, cardiovascular diseases, and cancer. Changes in the metabolism in patients with obesity frequently lead to insulin resistance, along with hyperglycemia, dyslipidemia and low-grade inflammation, favoring a more aggressive tumor microenvironment. One of the hallmarks of cancer is the reprogramming of the energy metabolism, in which tumor cells change oxidative phosphorylation to aerobic glycolysis or \"Warburg effect\". Aerobic glycolysis is faster than oxidative phosphorylation, but less efficient in terms of ATP production. To obtain sufficient ATP, tumor cells increase glucose uptake by the glucose transporters of the GLUT/SLC2 family. The human glucose transporter GLUT12 was isolated from the breast cancer cell line MCF7. It is expressed in adipose tissue, skeletal muscle and small intestine, where insulin promotes its translocation to the plasma membrane. Moreover, GLUT12 over-expression in mice increases the whole-body insulin sensitivity. Thus, GLUT12 has been proposed as a second insulin-responsive glucose transporter. In obesity, GLUT12 is downregulated and does not respond to insulin. In contrast, GLUT12 is overexpressed in human solid tumors such as breast, prostate, gastric, liver and colon. High glucose concentration, insulin, and hypoxia upregulate GLUT12 both in adipocytes and tumor cells. Inhibition of GLUT12 mediated Warburg effect suppresses proliferation, migration, and invasion of cancer cells and xenografted tumors. This review summarizes the up-to-date information about GLUT12 physiological role and its implication in obesity and cancer, opening new perspectives to consider this transporter as a therapeutic target.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Obituary Prof. Ana María Barber. 讣告 Ana María Barber 教授。
IF 3.4 3区 生物学
Journal of physiology and biochemistry Pub Date : 2024-05-09 DOI: 10.1007/s13105-024-01025-y
M Pilar Lostao
{"title":"Obituary Prof. Ana María Barber.","authors":"M Pilar Lostao","doi":"10.1007/s13105-024-01025-y","DOIUrl":"https://doi.org/10.1007/s13105-024-01025-y","url":null,"abstract":"","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel insight on IRE1 in the regulation of chondrocyte dedifferentiation through ER stress independent pathway. 关于 IRE1 通过独立于 ER 应激的途径调控软骨细胞再分化的新见解。
IF 3.4 3区 生物学
Journal of physiology and biochemistry Pub Date : 2024-05-01 Epub Date: 2024-02-10 DOI: 10.1007/s13105-024-01008-z
Young Seok Eom, Fahad Hassan Shah, Song Ja Kim
{"title":"Novel insight on IRE1 in the regulation of chondrocyte dedifferentiation through ER stress independent pathway.","authors":"Young Seok Eom, Fahad Hassan Shah, Song Ja Kim","doi":"10.1007/s13105-024-01008-z","DOIUrl":"10.1007/s13105-024-01008-z","url":null,"abstract":"<p><p>Inositol-requiring enzyme-1 (IRE1) is the master regulator of the unfolded protein response pathway, associated with the endoplasmic reticulum (ER) in sensing and regulating cell stress. The activity of IRE1 is highly explored and well-characterized in cancer and other cells. However, the IRE1 molecular mechanism in chondrocytes is poorly understood. The present study explored the effect of IRE1 on chondrocytes regarding its chondrogenic gene expression and its correlation with different cellular pathways and cell behavior. Chondrocytes transfected with the cDNA of IRE1 reduced the expression of type II collagen, disrupting chondrocyte differentiation as confirmed by western blotting and immunofluorescence. Upon siRNA treatment, the influence of IRE1 on chondrocyte differentiation is restored by reviving the normal expression of type II collagen. Different molecular pathways were explored to investigate the role of IRE1 in causing chondrocyte dedifferentiation. However, we found no significant correlation, as IRE1 induces dedifferentiation through independent pathways. In response to various endoplasmic reticulum (ER) agonists (2-deoxy-D-glucose), and ER stress antagonists (tauroursodeoxycholic acid and salubrinal), IRE1 overexpression did not affect GRP78/94, as implicated in the pathogenesis of ER stress. Moreover, when IRE1 overexpression was correlated with the inflammation pathway, nuclear factor-kappa B (NFκB), IRE1 substantially increased the expression of p50 while decreasing the expression of nuclear factor kappa light polypeptide alpha (IκBα). These results suggest that IRE1 induces dedifferentiation in chondrocytes by modulating inflammatory pathways that cause dedifferentiation by disrupting type II collagen expression.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"337-347"},"PeriodicalIF":3.4,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139712471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信