Anh Tong, Daria Nuzhina, Christoph Bernhard Bernhard Resch, Georg Benka, Andreas Bauer, Christian Pfleiderer
{"title":"Electrical resistivity of ErB<sub>2</sub>under pressure.","authors":"Anh Tong, Daria Nuzhina, Christoph Bernhard Bernhard Resch, Georg Benka, Andreas Bauer, Christian Pfleiderer","doi":"10.1088/1361-648X/adc77a","DOIUrl":"https://doi.org/10.1088/1361-648X/adc77a","url":null,"abstract":"<p><p>Diborides<i>A</i>B<sub>2</sub>crystallizing in the hexagonal C32 structure exhibit a wide range of magnetic and electronic properties depending on the choice of the element<i>A</i>and the precise values of the lattice constants<i>a</i>and<i>c</i>. ErB<sub>2</sub>represents a typical rare-earth diboride, exhibiting easy-plane ferromagnetic order below 14 K. We report a study of the evolution of the electrical transport properties of ErB<sub>2</sub>when tuning the lattice constants under pressures up to 5.6 GPa. Using Bridgman-type pressure cells with polycrystalline diamond anvils and steatite as the solid pressure medium, quasi-hydrostatic conditions are provided. We find that magnetic order is stabilized under pressure and discuss the influence of uniaxial components by comparing measurements on polycrystalline and single-crystalline samples.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143753225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Defects in oxide ultrathin films and 2D materials.","authors":"Falko P Netzer, Svetlozar Surnev","doi":"10.1088/1361-648X/adc05f","DOIUrl":"10.1088/1361-648X/adc05f","url":null,"abstract":"<p><p>Defects, that are irregularities in crystal lattices, create special sites or regions of particular geometry, electronic structure and activity that influence the physical and chemical behavior of the materials in a significant way. Here we examine published work on defects in two-dimensional (2D) oxide systems. The latter have attracted interest and significance in many areas of modern science and technology in recent years. The defects are classified according to their dimensionality: point defects, line defects and 2D specific topological defects are considered. Key features of the different defect types are illustrated and discussed with selected prototypical examples.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143625036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shalini Badola, Aprajita Joshi, Akriti Singh, Surajit Saha
{"title":"Signatures of magnon-phonon coupling in frustrated double perovskite square lattices.","authors":"Shalini Badola, Aprajita Joshi, Akriti Singh, Surajit Saha","doi":"10.1088/1361-648X/adc0da","DOIUrl":"10.1088/1361-648X/adc0da","url":null,"abstract":"<p><p>Low-dimensional frustrated magnetic square networks feature a variety of unconventional phases with novel emergent excitations. Often these excitations are intertwined and manifest into intriguing phenomena, an area that has remained largely unexplored in square-lattice systems, especially, double perovskites (A<sub>2</sub>BB'O<sub>6</sub>). In this study, we explore these interactions between the fundamental excitations such as phonons and magnons in square-lattice Sr<sub>2</sub>CuTeO<sub>6</sub>, Sr<sub>2</sub>CuWO<sub>6</sub>, and Ba<sub>2</sub>CuWO<sub>6</sub>isostructural double perovskites that exhibit both short-ranged (<i>T</i><sub>max</sub>) as well as long-ranged Néel antiferromagnetic (<i>T</i><sub>N</sub>) transitions. Our Raman measurements at variable temperatures reveal an intriguing broad peak (identified as 2-magnon (2M)) surviving beyond<i>T</i><sub>max</sub>for W-based compositions contrary to the Te-based system, suggesting a key role of diamagnetic B'-site cation on their magnetism. The thermal response of 2M intriguingly shows signatures of correlation with phonons and control over their anharmonicity, depicting magnon-phonon interaction. Further, a few phonons exhibit anomalies across the magnetic transitions implying the presence of spin-phonon coupling. In particular, the phonon modes at ∼194 cm<sup>-1</sup>of Sr<sub>2</sub>CuTeO<sub>6</sub>and ∼168 cm<sup>-1</sup>of Sr<sub>2</sub>CuWO<sub>6</sub>, that show a strong correlation with the 2M, exhibit the strongest spin-phonon coupling suggesting their roles in mediating magnon-phonon interactions in these systems.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143630342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wilson Alberto Tárraga, Marilina Cathcarth, Agustin S Picco, Gabriel S Longo
{"title":"Silica-Binding Peptides: Physical Chemistry and Emerging Biomaterials Applications.","authors":"Wilson Alberto Tárraga, Marilina Cathcarth, Agustin S Picco, Gabriel S Longo","doi":"10.1088/1361-648X/adc6e2","DOIUrl":"https://doi.org/10.1088/1361-648X/adc6e2","url":null,"abstract":"<p><p>Silica-binding peptides (SBPs) are increasingly recognized as versatile tools for various applications spanning biosensing, biocatalysis, and environmental remediation.
This review explores the interaction between these peptides and silica surfaces, offering insights into how variables such as surface silanol density, peptide sequence and composition, and solution conditions influence binding affinity.
Key advancements in SBP applications are discussed, including their roles in protein purification, biocatalysis, biosensing, and biomedical engineering.
By examining the underlying binding mechanisms and exploring their practical potential, this work provides a comprehensive understanding of how SBPs can drive innovations in materials science and biotechnology.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143743021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Han Li, Ziteng Xu, Jiaxun Zhang, Saisai Li, Shuoze Li, Xingwei Chen, Lijun Lu, Zhifeng Pan, Yanchao Mao
{"title":"Recent progress of flexible electrospun nanofibers based triboelectric nanogenerators for self-powered electronics.","authors":"Han Li, Ziteng Xu, Jiaxun Zhang, Saisai Li, Shuoze Li, Xingwei Chen, Lijun Lu, Zhifeng Pan, Yanchao Mao","doi":"10.1088/1361-648X/adbfed","DOIUrl":"10.1088/1361-648X/adbfed","url":null,"abstract":"<p><p>The depletion of fossil fuels and the environmental impact of chemical batteries, coupled with the rapid proliferation of portable electronic devices and the Internet of Things, have created an urgent demand for high-performance, lightweight, and sustainable energy systems. Flexible triboelectric nanogenerators (TENGs) have emerged as a promising technology for powering self-sufficient devices, offering advantages such as simple structure, flexibility, low cost, and environmental adaptability. In particular, electrospun nanofiber-based TENGs stand out due to their enhanced surface area, superior charge collection capabilities, and improved mechanical durability. This review presents a comprehensive overview of recent advancements in electrospun nanofiber-based TENGs, focusing on material selection, structural design, fabrication techniques, and their integration into applications ranging from self-powered sensors to wearable electronics. Furthermore, the review discusses the challenges and future directions in optimizing the performance and scalability of TENGs to meet the growing demands of next-generation, energy-efficient technologies. It is hoped that this review will help researchers to gain a deeper understanding of this field and promote its development to a new stage.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143615781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Robust half-metallic properties in two-dimensional CuCr<sub>2</sub>Se<sub>2</sub>X<sub>2</sub>(X = Cl, Br, I).","authors":"Haimei Zhou, Yujing Guo, Shuai Liu, Yiran Peng, Wenhui Wan, Yong Liu, Yanfeng Ge","doi":"10.1088/1361-648X/adbeb0","DOIUrl":"10.1088/1361-648X/adbeb0","url":null,"abstract":"<p><p>In recent years, the rapid development of two-dimensional (2D) magnetic materials has revolutionized the field of spintronics, driven by their unique ability to combine magnetism and electronic functionality at the atomic scale. Here, we investigate the monolayer CuCr<sub>2</sub>Se<sub>2</sub>X<sub>2</sub>(X = Cl, Br, I), which exhibit robust ferromagnetic (FM) behavior and half-metallicity with 100% spin polarization. The strong FM coupling, mediated by superexchange interactions, is rooted in the unique electronic structure of the Cr<i>d</i>-orbitals. Our findings reveal high Curie temperatures (TC) exceeding room temperature, with the Br variant achieving a remarkable 586 K. These exceptional properties, including the ability to modulate exchange interactions through strain engineering, highlight CuCr<sub>2</sub>Se<sub>2</sub>X<sub>2</sub>as a versatile platform for flexible, high-performance spintronic devices, paving the way for advancements in next-generation electronic applications.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143597241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elias Andrade, Ramon Carrillo-Bastos, Gerardo G Naumis
{"title":"Topical Review: Electronic and optical properties ofKekul´e and other short wavelength spatialmodulated textures of graphene.","authors":"Elias Andrade, Ramon Carrillo-Bastos, Gerardo G Naumis","doi":"10.1088/1361-648X/adc6e1","DOIUrl":"https://doi.org/10.1088/1361-648X/adc6e1","url":null,"abstract":"<p><p>A review of the electronic and optical properties of Kekul'e and other short wavelength modulations textures on graphene is presented. Starting from the experimental realization of
such textures, the review discuss the electronic and optical properties in terms of several theoretical models like the tight-binding Hamiltonian and effective low energy models based on the Dirac equation. Other surveyed subjects are, strain effects, valley engineering, Keul'e bilayers, zitterbewegung, Kekul'e interfaces, valley birefringence and the skew valley scattering. 
Specific signatures in the optical and electronic conductivities of Kekule textures are next discussed using several approaches like linear response theory, the random phase approximation and Floquet theory. Plasmons are also presented by considering the dielectric function. Finally, a discussion is presented on how Kekulé textures are related with highly correlated phases, including its importance in magic angle twisted bilayer graphene (MATBG) superconductivity and related quantum phases.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143743027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sonika Bagga, Sunil Gangwar, Pankaj Kumar, Arghya Taraphder, C S Yadav
{"title":"Extended Kohler's scaling and Isosbestic point in the charge density wave state of 1T-VSe<sub>2</sub>.","authors":"Sonika Bagga, Sunil Gangwar, Pankaj Kumar, Arghya Taraphder, C S Yadav","doi":"10.1088/1361-648X/adc6e4","DOIUrl":"https://doi.org/10.1088/1361-648X/adc6e4","url":null,"abstract":"<p><p>1T-VSe<sub>2</sub>is a narrow band transition metal chalcogenide that shows charge density wave (CDW) state below T<sub>CDW</sub>= 110 K. Here, we have explored the relevance of Kohler's rule and the thermal transport properties of VSe<sub>2</sub>across the CDW state in the presence of magnetic field. The magnetoresistance (MR) follows Kohler's rule above T<sub>CDW</sub>, while an extended Kohler's rule is employed below T<sub>CDW</sub>. Interestingly, we observed an anomaly in MR around T ∼ 20 K, below which MR value decreases on lowering temperature. This anomaly is also reflected in the slope (κ) of Kohler's plots and the relative change in the thermal excitation induced carrier density (n<sub>T</sub>). Despite a strong magnetic field of 14 Tesla, the T<sub>CDW</sub>remains largely unaffected in both electrical resistivity (ρ(T)) and Seebeck coefficient (S), although the application of magnetic field does enhance the peak intensity of S around T ∼ 60 K. The crossover of S curves measured at different magnetic fields at T ∼ 20 K suggests the existence of a novel feature within the CDW state of VSe<sub>2</sub>i.e., the presence of a locally exact isosbestic point.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143742960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sy Van Vu, Kim-Dung Thi Ho, Phuong-Thao Do, Thu Anh Nguyen, Quang Duy Nguyen, Trung-Dung Tran Nguyen, Huy Huu Truong, Man Van Tran, Tien Nu Hoang Lo, In Park, Van-Nam Dao, Van-Dung Le, Khuong Quoc Vo
{"title":"Synthesis of zinc oxide nano-rice decorated with silver nanoparticles for surface-enhanced Raman scattering (SERS) trace detection of isoprocarb and crystal violet.","authors":"Sy Van Vu, Kim-Dung Thi Ho, Phuong-Thao Do, Thu Anh Nguyen, Quang Duy Nguyen, Trung-Dung Tran Nguyen, Huy Huu Truong, Man Van Tran, Tien Nu Hoang Lo, In Park, Van-Nam Dao, Van-Dung Le, Khuong Quoc Vo","doi":"10.1088/1361-648X/adc05d","DOIUrl":"10.1088/1361-648X/adc05d","url":null,"abstract":"<p><p>Surface-enhanced Raman scattering (SERS) has gained substantial interest for the practical analysis of trace amounts of various molecules. However, improving the magnitude of the electromagnetic enhancement and preparing the substrate for long-term use remains top research priorities. This study presents a novel and straightforward synthesis method for zinc oxide nanorices (ZnONRs) decorated with small silver particles (Ag/ZnONR), which can serve as a highly stable, sensitive, and reproducible material for SERS detection of isoprocarb (IPC) and crystal violet (CV). Integrating ZnONR and AgNPs at an appropriate mixing ratio can generate many plasmonic 'hotspots' on the surface due to the strong surface plasmon capability of AgNPs when excited by appropriate light. The length of ZnO nanorods (ZnONR) has been controlled to range from 100 nm to 120 nm, with an aspect ratio (AR, the ratio of nanoparticle length to width) of about 3:1. Additionally, the formed silver nanoparticles have an average diameter of approximately 20-40 nm and randomly distributed on the surface of the ZnO. Specifically, we found that the exceptional detection enhancement factor was 2.5 × 10<sup>9</sup>, along with high reproducibility due to the embedding of AgNPs in the inert structure of ZnO nano rice, which helps prevent the loss of AgNPs during analysis and can be reused multiple times while maintaining good signal intensity stability. Significantly, this embedded nanostructure could achieve a reasonable limit of detection of 0.402 nM for CV and 0.147 pM for IPC, with a high reproducibility (RSD of 5,98%). The electromagnetic field enhancement phenomenon of this nanomaterial was further analyzed through Finite-Difference Time-Domain simulations, demonstrating that the intensity of the electromagnetic field (EM-field) of Ag/ZnONRs (66.0) is significantly ten times greater than that observed with pristine AgNPs (6.31) or ZnONRs (1.84). Integrating these nanomaterials creates a sophisticated category of hybrid nanosubstrates suitable for a wide range of future detection applications employing the SERS method.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143625053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Positron stopping in multilayer materials.","authors":"A C L Jones, T Chung, F A Selim","doi":"10.1088/1361-648X/adc062","DOIUrl":"10.1088/1361-648X/adc062","url":null,"abstract":"<p><p>Positron annihilation spectroscopy provides a sensitive toolset for defect characterization. In beam based studies of single-layer targets, the form of implantation profiles is well established, depending on the kinetic energy and angle of incident positrons relative to the target surface and the density and average atomic number of the target. For multilayer systems, the difference in density and across the layers makes derivation of an analytical form difficult. To date, the determination of positron stopping profiles in multilayer targets has primarily involved Monte Carlo simulations. We present here an alternative approach that estimates the energy distributiondN/dEof those positrons transmitted past each layer boundary, by fitting the remaining tail of the stopping profile after each layer with a basis set comprised of calculated stopping profiles in the same material they are transmitted through. The stopping profile in the next layer is then found by summing a series of stopping profiles in the new medium in proportion to the determined distributiondN/dE. The results of our model are compared with simulation results in a system of alternating layers of Al and Au and find reasonable agreement in the predicted profile and excellent agreement in the predicted mean implantation depth. Lastly, we derived a simple formula-based approach for the calculation of the mean implantation depth in two-layer systems that provides results in excellent agreement with the full model.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143625039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}