An unexpectedly shrunken bandgap in V2O5nanoparticles.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
E L Anquillare, F Yang, L Kao, X Feng, V Altoe, V Jovic, D Goodacre, Y Liu, L H Doerrer, J Guo, K E Smith
{"title":"An unexpectedly shrunken bandgap in V<sub>2</sub>O<sub>5</sub>nanoparticles.","authors":"E L Anquillare, F Yang, L Kao, X Feng, V Altoe, V Jovic, D Goodacre, Y Liu, L H Doerrer, J Guo, K E Smith","doi":"10.1088/1361-648X/add63c","DOIUrl":null,"url":null,"abstract":"<p><p>Synchrotron x-ray spectroscopy was employed to determine the effects of nanostructuring on electronic band structure in V<sub>2</sub>O<sub>5</sub>, a promising cathode material and widely used catalyst. V<sub>2</sub>O<sub>5</sub>nanoparticle and bulk powders were characterized via P-XRD, electron microscopy, and diffuse reflectance ultraviolet/visible/near-infrared spectroscopy to confirm the optical bandgap. X-ray emission spectroscopy revealed the nanoparticle valence band O 2<i>p</i>states to be upshifted relative to the bulk, while x-ray absorption spectroscopy and resonant inelastic x-ray scattering showed the lowest V 3<i>d</i>conduction band states to be static. Together, these changes (in conjunction with an increased density of unoccupied lower conduction band states) produce a shrunken bandgap in the V<sub>2</sub>O<sub>5</sub>nanoparticles that defies the Burstein-Moss effect. Changes in nanoparticle band structure are generally attributed to oxygen vacancy defects. While nanostructure bandgap reduction is in line with much previous computational work, it is unexpected from most previous experimental results. To our knowledge, this is the first synchrotron x-ray spectroscopy study of a shrunken bandgap achieved in pure V<sub>2</sub>O<sub>5</sub>nanoparticles.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/add63c","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Synchrotron x-ray spectroscopy was employed to determine the effects of nanostructuring on electronic band structure in V2O5, a promising cathode material and widely used catalyst. V2O5nanoparticle and bulk powders were characterized via P-XRD, electron microscopy, and diffuse reflectance ultraviolet/visible/near-infrared spectroscopy to confirm the optical bandgap. X-ray emission spectroscopy revealed the nanoparticle valence band O 2pstates to be upshifted relative to the bulk, while x-ray absorption spectroscopy and resonant inelastic x-ray scattering showed the lowest V 3dconduction band states to be static. Together, these changes (in conjunction with an increased density of unoccupied lower conduction band states) produce a shrunken bandgap in the V2O5nanoparticles that defies the Burstein-Moss effect. Changes in nanoparticle band structure are generally attributed to oxygen vacancy defects. While nanostructure bandgap reduction is in line with much previous computational work, it is unexpected from most previous experimental results. To our knowledge, this is the first synchrotron x-ray spectroscopy study of a shrunken bandgap achieved in pure V2O5nanoparticles.

V2O5纳米粒子带隙意外缩小。
采用同步加速器x射线能谱法研究了纳米结构对V2O5电子能带结构的影响。V2O5是一种很有前途的阴极材料和广泛应用的催化剂。通过P-XRD、TEM和漫反射紫外-可见-近红外光谱对V2O5纳米颗粒粉末进行了表征,以确定其光学带隙。XAS和RIXS显示纳米粒子的价带o2p态相对于本体向上移动,而XAS和RIXS显示最低的V 3d导带态是静态的。总之,这些变化(加上未占据的低导带态密度的增加)在V2O5纳米颗粒中产生了一个缩小的带隙,这违背了伯斯坦·莫斯效应。纳米粒子带结构的变化通常归因于氧空位缺陷。虽然纳米结构的带隙减小与以前的许多计算工作一致,但与以前的大多数实验结果相比,这是意想不到的。据我们所知,这是第一次在纯V2O5纳米颗粒中实现带隙缩小的同步加速器x射线光谱研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信