Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)最新文献

筛选
英文 中文
Previsão da duração de carregamentos de embarcações PLSV 预测船舶装载时间PLSV
Rachel Martins Ventriglia, L. Bastos, Karla Figueiredo, Marley Vallasco
{"title":"Previsão da duração de carregamentos de embarcações PLSV","authors":"Rachel Martins Ventriglia, L. Bastos, Karla Figueiredo, Marley Vallasco","doi":"10.5753/eniac.2022.227313","DOIUrl":"https://doi.org/10.5753/eniac.2022.227313","url":null,"abstract":"As embarcações Pipe-laying Support Vessel (PLSV) realizam tarefas de interligação submarinas, que necessitam de diversos recursos materiais. Estes recursos são carregados nos navios, e atualmente o planejamento dos carregamentos é resolvido de forma heurística, com taxas de erros altas, em torno de 84%. Com o objetivo de auxiliar neste planejamento operacional, este trabalho propôs a investigação e seleção de diversos modelos de aprendizado de máquina para prever a duração dos carregamentos. Os modelos que apresentaram melhor desempenho na base de teste foram o Gradient Boosting, Regressão Linear e o Stacking Regressor, com um erro percentual médio absoluto de no máximo 36% nos dados de teste.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129028942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Deep Learning Models for Aircraft Maintenance 深度学习模型在飞机维修中的应用
Humberto Hayashi Sano, Lilian Berton
{"title":"Application of Deep Learning Models for Aircraft Maintenance","authors":"Humberto Hayashi Sano, Lilian Berton","doi":"10.5753/eniac.2022.227575","DOIUrl":"https://doi.org/10.5753/eniac.2022.227575","url":null,"abstract":"Neural networks provide useful approaches for determining solutions to complex nonlinear problems. The use of these models offers a feasible approach to help aircraft maintenance, especially health monitoring and fault detection. The technical complexity of aircraft systems poses many challenges for maintenance lines that need to optimize time, efficiency, and consistency. In this work, we first employ Convolutional Neural Networks (CNN), and Multi-Layer Perceptron (MLP) for the classification of aircraft Pressure Regulated Shutoff Valves (PRSOV). We classify a wide range of defects such as Friction, Charge and Discharge faults considering single and multi-failures. As a result of this work, we observed a significant improvement in the classification accuracy in the case of applying neural networks such as MLP (0.9962) and CNN (0.9937) when compared to a baseline KNN (0.8788).","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131855425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the evaluation of example-dependent cost-sensitive models for tax debts classification 基于实例的税收债务分类成本敏感模型的评价
H. S. Lima, Damires Fernandes, Thiago J. M. Moura
{"title":"On the evaluation of example-dependent cost-sensitive models for tax debts classification","authors":"H. S. Lima, Damires Fernandes, Thiago J. M. Moura","doi":"10.5753/eniac.2022.227607","DOIUrl":"https://doi.org/10.5753/eniac.2022.227607","url":null,"abstract":"Example-dependent cost-sensitive classification methods are suitable to many real-world classification problems, where the costs, due to misclassification, vary among every example of a dataset. Tax administration applications are included in this segment of problems, since they deal with different values involved in the tax payments. To help matters, this work presents an experimental evaluation which aims to verify whether cost-sensitive learning algorithms are more cost-effective on average than traditional ones. This task is accomplished in a tax administration application domain, what implies the need of a cost-matrix regarding debt values. The obtained results show that cost-sensitive methods avoid situations like erroneously granting a request with a debt involving millions of reals. Considering the savings score, the cost-sensitive classification methods achieved higher results than their traditional method versions.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127918670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Learned OWA Operators in Pooling and Channel Aggregation Layers in Convolutional Neural Networks 学习OWA算子在卷积神经网络池化层和通道聚合层中的应用
Leonam R. S. Miranda, F. G. Guimarães
{"title":"Application of Learned OWA Operators in Pooling and Channel Aggregation Layers in Convolutional Neural Networks","authors":"Leonam R. S. Miranda, F. G. Guimarães","doi":"10.5753/eniac.2022.227310","DOIUrl":"https://doi.org/10.5753/eniac.2022.227310","url":null,"abstract":"Promising results have been obtained in recent years when using OWA operators to aggregate data within CNNs pool layers, training their weights, instead of using the more usual operators (max and mean). OWA operators were also used to learn channel wise information from a certain layer, and the newly generated information is used to complement the input data for the following layer. The purpose of this article is to analyze and combine the two mentioned ideas. In addition to using the channel wise information generated by trainable OWA operators to complement the input data, replacement will also be analyzed. Several tests have been done to evaluate the performance change when applying OWA operators to classify images using VGG13 model.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114156941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
K-Nearest Neighbors based on the Nk Interaction Graph 基于 Nk 交互图的 K 最近邻图
Gustavo F. C. de Castro, R. Tinós
{"title":"K-Nearest Neighbors based on the Nk Interaction Graph","authors":"Gustavo F. C. de Castro, R. Tinós","doi":"10.5753/eniac.2022.227174","DOIUrl":"https://doi.org/10.5753/eniac.2022.227174","url":null,"abstract":"The K-Nearest Neighbors (KNN) is a simple and intuitive nonparametric classification algorithm. In KNN, the K nearest neighbors are determined according to the distance to the example to be classified. Generally, the Euclidean distance is used, which facilitates the formation of hyper-ellipsoid clusters. In this work, we propose using the Nk interaction graph to return the K-nearest neighbors in KNN. The Nk interaction graph, originally used in clustering, is built based on the distance between examples and spatial density in small groups formed by k examples of the training dataset. By using the distance combined with the spatial density, it is possible to form clusters with arbitrary shapes. We propose two variations of the KNN based on the Nk interaction graph. They differ in the way in which the vertices associated with the N examples of the training dataset are visited. The two proposed algorithms are compared to the original KNN in experiments with datasets with different properties.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126420953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the Potential of Federated Learning for Maize Leaf Disease Prediction 评价联邦学习在玉米叶片病害预测中的潜力
Thalita Mendonça Antico, L. F. R. Moreira, Rodrigo Moreira
{"title":"Evaluating the Potential of Federated Learning for Maize Leaf Disease Prediction","authors":"Thalita Mendonça Antico, L. F. R. Moreira, Rodrigo Moreira","doi":"10.5753/eniac.2022.227293","DOIUrl":"https://doi.org/10.5753/eniac.2022.227293","url":null,"abstract":"The diagnosis of diseases in food crops based on machine learning seemed satisfactory and suitable for use on a large scale. The Convolutional Neural Networks (CNNs) perform accurately in the disease prediction considering the image capture of the crop leaf, being extensively enhanced in the literature. These machine learning techniques fall short in data privacy, as they require sharing the data in the training process with a central server, disregarding competitive or regulatory concerns. Thus, Federated Learning (FL) aims to support distributed training to address recognized gaps in centralized training. As far as we know, this paper inaugurates the use and evaluation of FL applied in maize leaf diseases. We evaluated the performance of five CNNs trained under the distributed paradigm and measured their training time compared to the classification performance. In addition, we consider the suitability of distributed training considering the volume of network traffic and the number of parameters of each CNN. Our results indicate that FL potentially enhances data privacy in heterogeneous domains.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121141537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Algoritmo de Ensemble para Classificação em Fluxo de Dados com Classes Desbalanceadas e Mudanças de Conceito 用于不平衡类和概念变化的数据流分类的集合算法
Douglas Amorim de Oliveira, Karina Valdivia Delgado, M. Lauretto
{"title":"Algoritmo de Ensemble para Classificação em Fluxo de Dados com Classes Desbalanceadas e Mudanças de Conceito","authors":"Douglas Amorim de Oliveira, Karina Valdivia Delgado, M. Lauretto","doi":"10.5753/eniac.2022.227356","DOIUrl":"https://doi.org/10.5753/eniac.2022.227356","url":null,"abstract":"Com o crescimento exponencial na geração de dados observado nas últimas décadas, a realização de tarefas de classificação sobre esses dados apresenta diversos desafios. Estes conjuntos de dados, por vezes, não são balanceadas quanto às suas classes e podem ocorrer alterações da formação das classes ao longo do tempo, chamadas de mudança de conceito. Dentre os algoritmos que visam solucionar esses problemas, o Kappa Updated Ensemble (KUE) tem apresentado bom desempenho em fluxo de dados com mudança de conceito. Como sua formulação original não é projetada para classes desbalanceadas, neste trabalho foram realizadas modificações no KUE afim de torná-lo mais robusto e aderente ao cenário de desbalanceamento nas bases de dados. Em experimentos realizados sobre oito conjuntos de dados com diferentes taxas de desbalanceamentos, o KUE modificado superou a versão original em cinco conjuntos de dados e produziu desempenho estatisticamente equivalente nos três restantes. Estes resultados são promissores e motivam novos desenvolvimentos para esta abordagem.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123345207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning for noisy multivariate time series classification: a comparison and practical evaluation 多变量时间序列分类的机器学习:比较与实用评价
A. P. S. Silva, Lucas R. Abbade, R. D. S. Cunha, T. M. Suller, Eric O. Gomes, E. Gomi, A. H. R. Costa
{"title":"Machine learning for noisy multivariate time series classification: a comparison and practical evaluation","authors":"A. P. S. Silva, Lucas R. Abbade, R. D. S. Cunha, T. M. Suller, Eric O. Gomes, E. Gomi, A. H. R. Costa","doi":"10.5753/eniac.2022.227600","DOIUrl":"https://doi.org/10.5753/eniac.2022.227600","url":null,"abstract":"Multivariate Time Series Classification (MTSC) is a complex problem that has seen great advances in recent years from the application of state-of-the-art machine learning techniques. However, there is still a need for a thorough evaluation of the effect of signal noise in the classification performance of MTSC techniques. To this end, in this paper, we evaluate three current and effective MTSC classifiers – DDTW, ROCKET and InceptionTime – and propose their use in a real-world classification problem: the detection of mooring line failure in offshore platforms. We show that all of them feature state-of-the-art accuracy, with ROCKET presenting very good results, and InceptionTime being marginally more accurate and resilient to noise.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134165928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Level Stacking 多层叠加
Fabiana Coutinho Boldrin, Adriano Henrique Cantão, R. Tinós, J. A. Baranauskas
{"title":"Multi-Level Stacking","authors":"Fabiana Coutinho Boldrin, Adriano Henrique Cantão, R. Tinós, J. A. Baranauskas","doi":"10.5753/eniac.2022.227346","DOIUrl":"https://doi.org/10.5753/eniac.2022.227346","url":null,"abstract":"Stacking é um dos algoritmos que combina os resultados de diferentes classificadores que foram gerados utilizando o mesmo conjunto de treinamento. Com objetivo de explorar alguns aspectos com relação ao algoritmo de stacking como o número de levels (camadas) de aprendizado, o número de classificadores por level e os algoritmos de utilizados, foi proposto o multi-level stacking. Para este trabalho foram feitos experimentos utilizando três tipos diferentes de indutores para diferentes datasets com dois levels de aprendizado.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134362619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Establishing the Parameters of a Decentralized Neural Machine Learning Model 分散神经机器学习模型参数的建立
Aline Ioste, M. Finger
{"title":"Establishing the Parameters of a Decentralized Neural Machine Learning Model","authors":"Aline Ioste, M. Finger","doi":"10.5753/eniac.2022.227342","DOIUrl":"https://doi.org/10.5753/eniac.2022.227342","url":null,"abstract":"The decentralized machine learning models face a bottleneck of high-cost communication. Trade-offs between communication and accuracy in decentralized learning have been addressed by theoretical approaches. Here we propose a new practical model that performs several local training operations before a communication round, choosing among several options. We show how to determine a configuration that dramatically reduces the communication burden between participant hosts, with a reduction in communication practice showing robust and accurate results both to IID and NON-IID data distributions.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132555630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信