A. P. S. Silva, Lucas R. Abbade, R. D. S. Cunha, T. M. Suller, Eric O. Gomes, E. Gomi, A. H. R. Costa
{"title":"多变量时间序列分类的机器学习:比较与实用评价","authors":"A. P. S. Silva, Lucas R. Abbade, R. D. S. Cunha, T. M. Suller, Eric O. Gomes, E. Gomi, A. H. R. Costa","doi":"10.5753/eniac.2022.227600","DOIUrl":null,"url":null,"abstract":"Multivariate Time Series Classification (MTSC) is a complex problem that has seen great advances in recent years from the application of state-of-the-art machine learning techniques. However, there is still a need for a thorough evaluation of the effect of signal noise in the classification performance of MTSC techniques. To this end, in this paper, we evaluate three current and effective MTSC classifiers – DDTW, ROCKET and InceptionTime – and propose their use in a real-world classification problem: the detection of mooring line failure in offshore platforms. We show that all of them feature state-of-the-art accuracy, with ROCKET presenting very good results, and InceptionTime being marginally more accurate and resilient to noise.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning for noisy multivariate time series classification: a comparison and practical evaluation\",\"authors\":\"A. P. S. Silva, Lucas R. Abbade, R. D. S. Cunha, T. M. Suller, Eric O. Gomes, E. Gomi, A. H. R. Costa\",\"doi\":\"10.5753/eniac.2022.227600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multivariate Time Series Classification (MTSC) is a complex problem that has seen great advances in recent years from the application of state-of-the-art machine learning techniques. However, there is still a need for a thorough evaluation of the effect of signal noise in the classification performance of MTSC techniques. To this end, in this paper, we evaluate three current and effective MTSC classifiers – DDTW, ROCKET and InceptionTime – and propose their use in a real-world classification problem: the detection of mooring line failure in offshore platforms. We show that all of them feature state-of-the-art accuracy, with ROCKET presenting very good results, and InceptionTime being marginally more accurate and resilient to noise.\",\"PeriodicalId\":165095,\"journal\":{\"name\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2022.227600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine learning for noisy multivariate time series classification: a comparison and practical evaluation
Multivariate Time Series Classification (MTSC) is a complex problem that has seen great advances in recent years from the application of state-of-the-art machine learning techniques. However, there is still a need for a thorough evaluation of the effect of signal noise in the classification performance of MTSC techniques. To this end, in this paper, we evaluate three current and effective MTSC classifiers – DDTW, ROCKET and InceptionTime – and propose their use in a real-world classification problem: the detection of mooring line failure in offshore platforms. We show that all of them feature state-of-the-art accuracy, with ROCKET presenting very good results, and InceptionTime being marginally more accurate and resilient to noise.