Douglas Amorim de Oliveira, Karina Valdivia Delgado, M. Lauretto
{"title":"用于不平衡类和概念变化的数据流分类的集合算法","authors":"Douglas Amorim de Oliveira, Karina Valdivia Delgado, M. Lauretto","doi":"10.5753/eniac.2022.227356","DOIUrl":null,"url":null,"abstract":"Com o crescimento exponencial na geração de dados observado nas últimas décadas, a realização de tarefas de classificação sobre esses dados apresenta diversos desafios. Estes conjuntos de dados, por vezes, não são balanceadas quanto às suas classes e podem ocorrer alterações da formação das classes ao longo do tempo, chamadas de mudança de conceito. Dentre os algoritmos que visam solucionar esses problemas, o Kappa Updated Ensemble (KUE) tem apresentado bom desempenho em fluxo de dados com mudança de conceito. Como sua formulação original não é projetada para classes desbalanceadas, neste trabalho foram realizadas modificações no KUE afim de torná-lo mais robusto e aderente ao cenário de desbalanceamento nas bases de dados. Em experimentos realizados sobre oito conjuntos de dados com diferentes taxas de desbalanceamentos, o KUE modificado superou a versão original em cinco conjuntos de dados e produziu desempenho estatisticamente equivalente nos três restantes. Estes resultados são promissores e motivam novos desenvolvimentos para esta abordagem.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algoritmo de Ensemble para Classificação em Fluxo de Dados com Classes Desbalanceadas e Mudanças de Conceito\",\"authors\":\"Douglas Amorim de Oliveira, Karina Valdivia Delgado, M. Lauretto\",\"doi\":\"10.5753/eniac.2022.227356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Com o crescimento exponencial na geração de dados observado nas últimas décadas, a realização de tarefas de classificação sobre esses dados apresenta diversos desafios. Estes conjuntos de dados, por vezes, não são balanceadas quanto às suas classes e podem ocorrer alterações da formação das classes ao longo do tempo, chamadas de mudança de conceito. Dentre os algoritmos que visam solucionar esses problemas, o Kappa Updated Ensemble (KUE) tem apresentado bom desempenho em fluxo de dados com mudança de conceito. Como sua formulação original não é projetada para classes desbalanceadas, neste trabalho foram realizadas modificações no KUE afim de torná-lo mais robusto e aderente ao cenário de desbalanceamento nas bases de dados. Em experimentos realizados sobre oito conjuntos de dados com diferentes taxas de desbalanceamentos, o KUE modificado superou a versão original em cinco conjuntos de dados e produziu desempenho estatisticamente equivalente nos três restantes. Estes resultados são promissores e motivam novos desenvolvimentos para esta abordagem.\",\"PeriodicalId\":165095,\"journal\":{\"name\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2022.227356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Algoritmo de Ensemble para Classificação em Fluxo de Dados com Classes Desbalanceadas e Mudanças de Conceito
Com o crescimento exponencial na geração de dados observado nas últimas décadas, a realização de tarefas de classificação sobre esses dados apresenta diversos desafios. Estes conjuntos de dados, por vezes, não são balanceadas quanto às suas classes e podem ocorrer alterações da formação das classes ao longo do tempo, chamadas de mudança de conceito. Dentre os algoritmos que visam solucionar esses problemas, o Kappa Updated Ensemble (KUE) tem apresentado bom desempenho em fluxo de dados com mudança de conceito. Como sua formulação original não é projetada para classes desbalanceadas, neste trabalho foram realizadas modificações no KUE afim de torná-lo mais robusto e aderente ao cenário de desbalanceamento nas bases de dados. Em experimentos realizados sobre oito conjuntos de dados com diferentes taxas de desbalanceamentos, o KUE modificado superou a versão original em cinco conjuntos de dados e produziu desempenho estatisticamente equivalente nos três restantes. Estes resultados são promissores e motivam novos desenvolvimentos para esta abordagem.