Journal of neurogenetics最新文献

筛选
英文 中文
SORDD: mutation frequency and phenotype in predominantly axonal Charcot-Marie-Tooth disease of undefined genetic cause. SORDD:遗传原因不明的主要轴索型夏科-玛丽-牙病的突变频率和表型。
IF 1.8 4区 医学
Journal of neurogenetics Pub Date : 2024-06-01 Epub Date: 2024-07-08 DOI: 10.1080/01677063.2024.2374898
Annabelle Arlt, Esra Akova-Öztürk, Anja Schirmacher, Bernhard Schlüter, Stephan Rust, Gerd Meyer Zu Hörste, Heinz Wiendl, Sarah Wiethoff
{"title":"SORDD: mutation frequency and phenotype in predominantly axonal Charcot-Marie-Tooth disease of undefined genetic cause.","authors":"Annabelle Arlt, Esra Akova-Öztürk, Anja Schirmacher, Bernhard Schlüter, Stephan Rust, Gerd Meyer Zu Hörste, Heinz Wiendl, Sarah Wiethoff","doi":"10.1080/01677063.2024.2374898","DOIUrl":"10.1080/01677063.2024.2374898","url":null,"abstract":"<p><p>Pathogenic, biallelic variants in <i>SORD</i> were identified in 2020 as a novel cause for autosomal-recessive Charcot-Marie-Tooth disease (CMT) type 2, an inherited neuropathy. <i>SORD</i> codes for the enzyme sorbitol dehydrogenase. Loss of this enzyme's activity leads to an increase of sorbitol in serum. We retrospectively screened 166 patients with axonal neuropathy (predominantly CMT type 2, but including intermediate form of CMT and distal hereditary motor neuropathy (dHMN)) without identified genetic etiology for <i>SORD</i> mutations at a single large German neuromuscular center. Clinical and electrophysiology exam findings were analyzed for genotype-phenotype correlation. Five patients of the total cohort of 166 patients harbored pathogenic variants in <i>SORD</i> (3%). The homozygous frameshift variant c.757delG (p.Ala253Glnfs*27) was the most common (4/5). One additional case carried this variant on one allele only and an additional pathogenic missense variant c.458C > A (p.Ala153Asp) on the other allele. Age of onset ranged from early infancy to mid-twenties, and phenotypes comprised axonal CMT (4) and dHMN (1). Our findings strengthen the importance of screening for pathogenic variants in <i>SORD</i>, especially in patients with genetically unconfirmed axonal neuropathy, especially CMT type 2 and dHMN.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":" ","pages":"35-40"},"PeriodicalIF":1.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global research landscape on the contribution of de novo mutations to human genetic diseases over the past 20 years: bibliometric analysis 过去 20 年全球关于新发基因突变对人类遗传疾病影响的研究概况:文献计量分析
IF 1.9 4区 医学
Journal of neurogenetics Pub Date : 2024-04-22 DOI: 10.1080/01677063.2024.2335171
Jing Guan, Xiaonan Wu, Jiao Zhang, Jin Li, Hongyang Wang, Qiuju Wang
{"title":"Global research landscape on the contribution of de novo mutations to human genetic diseases over the past 20 years: bibliometric analysis","authors":"Jing Guan, Xiaonan Wu, Jiao Zhang, Jin Li, Hongyang Wang, Qiuju Wang","doi":"10.1080/01677063.2024.2335171","DOIUrl":"https://doi.org/10.1080/01677063.2024.2335171","url":null,"abstract":"As the contribution of de novo mutations (DNMs) to human genetic diseases has been gradually uncovered, analyzing the global research landscape over the past 20 years is essential. Because of the l...","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"50 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140634618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meta-analysis of the association between C9orf72 repeats and neurodegeneration diseases. C9orf72重复序列与神经变性疾病相关的元分析。
IF 1.8 4区 医学
Journal of neurogenetics Pub Date : 2024-03-01 Epub Date: 2024-05-20 DOI: 10.1080/01677063.2024.2343672
Pingfei Jin, Yong Li, Yao Li
{"title":"Meta-analysis of the association between <i>C9orf72</i> repeats and neurodegeneration diseases.","authors":"Pingfei Jin, Yong Li, Yao Li","doi":"10.1080/01677063.2024.2343672","DOIUrl":"10.1080/01677063.2024.2343672","url":null,"abstract":"<p><p>To conduct a meta-analysis investigating the relationship between the chromosome 9 open reading frame 72 (<i>C9orf72</i>) GGGGCC (G4C2) and neurodegenerative diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). We searched the EMBASE, PubMed, Web of Science, and Cochrane databases. Twenty-seven case-control studies were included, comprising 7202 AD, 5856 PD, 644 MSA, 439 PSP, and 477 CBD cases. This study demonstrated that <i>C9orf72</i> repeat expansions (>30) were associated with AD, MSA, PSP, and CBD (AD: OR = 4.88, 95% CI = 2.71-8.78; MSA: OR = 6.98, 95% CI = 1.48-33.01; PSP: OR =10.04, 95% CI = 2.72-37.10; CBD: OR = 28.04, 95% CI = 10.17-77.31). <i>C9orf72</i> intermediate repeat expansions (20-30) were not associated with AD and MSA (AD: OR = 1.16, 95% CI = 0.39-3.45; MSA: OR = 5.65, 95% CI = 0.69-46.19), while <i>C9orf72</i> repeat expansions (>30) were not associated with the risk of PD (OR = 1.51, 95% CI = 0.55-4.17), <i>C9orf72</i> intermediate repeat expansions (20-30) were indeed associated with PD (OR = 2.43, 95% CI = 1.20-4.9). The pathological mechanism of <i>C9orf72</i> G4C2 repeat expansions differs across various NDs due to the varying number of pathogenic expansions. Measuring the number of <i>C9orf72</i> G4C2 repeats may be useful in the early-stage differential diagnosis of various NDs.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":" ","pages":"1-8"},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and bioinformatics analysis of a novel variant in the HERC2 gene in a patient with intellectual developmental disorder. 一名智力发育障碍患者的 HERC2 基因新型变异的鉴定和生物信息学分析。
IF 1.8 4区 医学
Journal of neurogenetics Pub Date : 2024-03-01 Epub Date: 2024-06-17 DOI: 10.1080/01677063.2024.2365634
Asal Asghari Sarfaraz, Neda Jabbarpour, Mortaza Bonyadi, Mohammad Khalaj-Kondory
{"title":"Identification and bioinformatics analysis of a novel variant in the <i>HERC2</i> gene in a patient with intellectual developmental disorder.","authors":"Asal Asghari Sarfaraz, Neda Jabbarpour, Mortaza Bonyadi, Mohammad Khalaj-Kondory","doi":"10.1080/01677063.2024.2365634","DOIUrl":"10.1080/01677063.2024.2365634","url":null,"abstract":"<p><p>HERC2-associated neurodevelopmental-disorders(NDD) encompass a cluster of medical conditions that arise from genetic mutations occurring within the <i>HERC2</i> gene. These disorders can manifest a spectrum of symptoms that impact the brain and nervous system, including delayed psychomotor development, severe mental retardation, seizures and autistic features. Whole-Exome-Sequencing(WES) was performed on a ten-year-old male patient referred to the genetic center for genetic analysis. Blood samples were collected from the proband, his parents, and his sister to extract DNA. PCR-Sanger-sequencing was utilized to validate the findings obtained from WES. In order to obtain a more thorough understanding of the impact of the mutation, an extensive analysis was conducted using bioinformatics tools. WES data analysis identified a homozygous single nucleotide change(C > T) at position c14215 located in exon ninety-two of the <i>HERC2</i> gene (NC_000015.10(NM_004667.6):c.14215C > T). The absence of this mutation among our cohort composed of four hundred normal healthy adults from the same ethnic group, and its absence in any other population database, confirms the pathogenicity of the mutation. This study revealed that the substitution of arginine with a stop codon within the Hect domain caused a premature stop codon at position 4739(p.Arg4739Ter). This mutation significantly results in the production of a truncated HERC2 protein with an incomplete HECT domain. In the final stage of ubiquitin attachment, HECT E3 ubiquitin ligases play a catalytic role by creating a thiolester intermediate using their conserved catalytic cysteine (Cys4762). This intermediate is formed before ubiquitin is transferred to a substrate protein. The truncation of the HERC2 protein is expected to disrupt its ability to perform this function, which could potentially hinder important regulatory processes related to the development and maintenance of synapses. The identification of a novel pathogenic variant, NC_000015.10(NM_004667.6):c.14215C > T, located within the ninety-two exon of the <i>HERC2</i> gene, is notable for its association with an autosomal recessive inheritance pattern in cases of Intellectual Developmental Disorder(IDD). In the end, this variant could potentially play a part in the underlying mechanisms leading to the onset of intellectual developmental disorder.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":" ","pages":"19-25"},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141331183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic heterogeneity within a consanguineous family involving TTPA and SETX genes 一个涉及 TTPA 和 SETX 基因的近亲家族的遗传异质性
IF 1.9 4区 医学
Journal of neurogenetics Pub Date : 2023-12-18 DOI: 10.1080/01677063.2023.2281916
Cyrine Jeridi, Amine Rachdi, Fatma Nabli, Zacharia Saied, Rania Zouari, Dina Ben Mohamed, Mariem Ben Said, Saber Masmoudi, Samia Ben Sassi, Rim Amouri
{"title":"Genetic heterogeneity within a consanguineous family involving TTPA and SETX genes","authors":"Cyrine Jeridi, Amine Rachdi, Fatma Nabli, Zacharia Saied, Rania Zouari, Dina Ben Mohamed, Mariem Ben Said, Saber Masmoudi, Samia Ben Sassi, Rim Amouri","doi":"10.1080/01677063.2023.2281916","DOIUrl":"https://doi.org/10.1080/01677063.2023.2281916","url":null,"abstract":"Autosomal recessive cerebellar ataxias (ARCA) constitute a highly heterogeneous group of progressive neurodegenerative disorders that typically occur prior to adulthood. Despite some clinical resem...","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"9 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138716622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Knockdown of circ_CLIP2 regulates the proliferation, metastasis and apoptosis of glioma cells through miR-641/EPHA3/STAT3 axis. circ_CLIP2的敲除通过miR-641/EPHA3/STAT3轴调节神经胶质瘤细胞的增殖、转移和凋亡。
IF 1.9 4区 医学
Journal of neurogenetics Pub Date : 2023-09-01 Epub Date: 2023-04-27 DOI: 10.1080/01677063.2023.2199067
Huibing Li, Xin Jin, Mingyao Lai, Yongshi Li, Ruixing Li, Huihui Yang, Baoying Yang
{"title":"Knockdown of circ_CLIP2 regulates the proliferation, metastasis and apoptosis of glioma cells through miR-641/EPHA3/STAT3 axis.","authors":"Huibing Li,&nbsp;Xin Jin,&nbsp;Mingyao Lai,&nbsp;Yongshi Li,&nbsp;Ruixing Li,&nbsp;Huihui Yang,&nbsp;Baoying Yang","doi":"10.1080/01677063.2023.2199067","DOIUrl":"10.1080/01677063.2023.2199067","url":null,"abstract":"<p><p>A great amount of reaches have confirmed that circular RNAs (circRNAs) are novel regulators in glioma progression. Here, our work aimed to probe the specific role of circ_CLIP2 in glioma. The mRNA and protein expressions were analyzed by qRT-PCR and western blot, respectively. Cell viability, migration, invasion and apoptosis were examined by MTT assay, tranwell and flow cytometry assays, respectively. Moreover, the binding relationships between circ_CLIP2, microRNA (miR)-641 and erythropoietin-producing human hepatocellular (Eph)A3 were verified by dual luciferase reporter gene assay and/or RIP assay. The following data showed that circ_CLIP2 and EPHA3 were markedly increased in glioma tissues and cells, while miR-647 was downregulated. Gain- and loss-of-function experiments discovered that circ_CLIP2 knockdown remarkably inhibited cell proliferation, migration and invasion and promoted cell apoptosis of glioma cells, while these effects of circ_CLIP2 knockdown were abolished by miR-641 inhibition. Circ_CLIP2 was proved as a sponge of miR-641 to competitively upregulate EPHA3 expression. In addition, EPHA3 overexpression could abolish the inhibitory effects of miR-641 overexpression on the malignant behaviors of glioma cells by activating the signal transducer and activator of transcription 3 (STAT3). These findings elucidated that circ_CLIP2 knockdown suppressed glioma development by regulation of the miR-641/EP HA3/STAT3 axis, which provided a novel mechanism for understanding the pathogenesis of glioma.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":" ","pages":"93-102"},"PeriodicalIF":1.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9400133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural stem cell-derived exosomal FTO protects neuron from microglial inflammatory injury by inhibiting microglia NRF2 mRNA m6A modification. 神经干细胞来源的外泌体FTO通过抑制小胶质细胞NRF2 mRNA m6A修饰来保护神经元免受小胶质细胞炎症损伤。
IF 1.9 4区 医学
Journal of neurogenetics Pub Date : 2023-09-01 Epub Date: 2023-10-16 DOI: 10.1080/01677063.2023.2259995
Zhiyong Li, Zhenggang Chen, Jun Peng
{"title":"Neural stem cell-derived exosomal FTO protects neuron from microglial inflammatory injury by inhibiting microglia NRF2 mRNA m6A modification.","authors":"Zhiyong Li, Zhenggang Chen, Jun Peng","doi":"10.1080/01677063.2023.2259995","DOIUrl":"10.1080/01677063.2023.2259995","url":null,"abstract":"<p><p>Ischemic stroke (IS) can cause neuronal cell loss and function defects. Exosomes derived from neural stem cells (NSC-Exos) improve neural plasticity and promote neural function repair following IS. However, the potential mechanism remains unclear. In this study, NSC-Exos were characterized and co-cultured with microglia. We found that NSC-Exos increased NRF2 expression in oxygen-glucose deprivation/reoxygenation and LPS-induced microglia and converted microglia from M1 pro-inflammatory phenotype to M2 anti-inflammatory phenotype. NSC-Exos reduced m6A methylation modification of nuclear factor erythroid 2-related factor 2 (NRF2) mRNA via obesity-associated gene (FTO). Furthermore, NSC-Exos reduced the damage to neurons caused by microglia's inflammatory response. Finally, the changes in microglia polarization and neuron damage caused by FTO knockdown in NSE-Exos were attenuated by NRF2 overexpression in microglia. These findings revealed that NSC-Exos promotes NRF2 expression and M2 polarization of microglial via transferring FTO, thereby resulting in neuroprotective effects.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":" ","pages":"103-114"},"PeriodicalIF":1.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41133141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The DST gene in neurobiology. 神经生物学中的 DST 基因
IF 1.9 4区 医学
Journal of neurogenetics Pub Date : 2023-09-01 Epub Date: 2024-03-11 DOI: 10.1080/01677063.2024.2319880
Robert Lalonde, Catherine Strazielle
{"title":"The <i>DST</i> gene in neurobiology.","authors":"Robert Lalonde, Catherine Strazielle","doi":"10.1080/01677063.2024.2319880","DOIUrl":"10.1080/01677063.2024.2319880","url":null,"abstract":"<p><p><i>DST</i> is a gene whose alternative splicing yields epithelial, neuronal, and muscular isoforms. The autosomal recessive <i>Dst<sup>dt</sup></i> (<i>dystonia musculorum</i>) spontaneous mouse mutation causes degeneration of spinocerebellar tracts as well as peripheral sensory nerves, dorsal root ganglia, and cranial nerve ganglia. In addition to <i>Dst<sup>dt</sup></i> mutants, axonopathy and neurofilament accumulation in perikarya are features of two other murine lines with spontaneous <i>Dst</i> mutations, targeted <i>Dst</i> knockout mice, <i>Dst</i>Tg4 transgenic mice carrying two deleted <i>Dst</i> exons, <i>Dst</i><sup>Gt</sup> mice with trapped actin-binding domain-containing isoforms, and conditional Schwann cell-specific <i>Dst</i> knockout mice. As a result of nerve damage, <i>Dst<sup>dt</sup></i> mutants display dystonia and ataxia, as seen in several genetically modified models and their motor coordination deficits have been quantified along with the spontaneous <i>Dst</i> nonsense mutant, the conditional Schwann cell-specific <i>Dst</i> knockout, the conditional <i>Dst</i><sup>Gt</sup> mutant, and the Dst-b isoform specific <i>Dst</i> mutant. Recent findings in humans have associated <i>DST</i> mutations of the Dst-b isoform with hereditary sensory and autonomic neuropathies type 6 (HSAN-VI). These data should further encourage the development of genetic techniques to treat or prevent ataxic and dystonic symptoms.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":" ","pages":"131-138"},"PeriodicalIF":1.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140094230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yin Yang 1 suppresses apoptosis and oxidative stress injury in SH-SY5Y cells by facilitating NR4A1 expression. 阴阳1号通过促进NR4A1的表达来抑制SH-SY5Y细胞的凋亡和氧化应激损伤。
IF 1.9 4区 医学
Journal of neurogenetics Pub Date : 2023-09-01 Epub Date: 2023-11-03 DOI: 10.1080/01677063.2023.2270745
Qin Kang, Wen Chai, Jun Min, Xinhui Qu
{"title":"Yin Yang 1 suppresses apoptosis and oxidative stress injury in SH-SY5Y cells by facilitating NR4A1 expression.","authors":"Qin Kang, Wen Chai, Jun Min, Xinhui Qu","doi":"10.1080/01677063.2023.2270745","DOIUrl":"10.1080/01677063.2023.2270745","url":null,"abstract":"<p><p>Oxidative stress plays a significant role in the development of Parkinson's disease (PD). Previous studies implicate nuclear receptor subfamily 4 group A member 1 (NR4A1) in oxidative stress associated with PD. However, the molecular mechanism underlying the regulation of NR4A1 expression remains incompletely understood. In the present study, a PD cell model was established by using 1-methyl-4-phenylpyridinium (MPP<sup>+</sup>) in SH-SY5Y cells. Cell viability and apoptosis were assessed by using CCK-8 assay and flow cytometry, respectively. The activities of LDH and SOD, and ROS generation were used as an indicators of oxidative stress. ChIP-PCR was performed to detect the interaction between Yin Yang 1 (YY1) and the <i>NR4A1</i> promoter. MPP<sup>+</sup> treatment inhibited SH-SY5Y cell viability in a dose- and time-dependent manner. NR4A1 and YY1 expression were decreased in MPP<sup>+</sup>-treated SH-SY5Y cells. Increasing NR4A1 or YY1 alleviated MPP<sup>+</sup>-induced apoptosis and oxidative stress in SH-SY5Y cells, whereas reduction of NR4A1 aggravated MPP<sup>+</sup>-induced cell injury. Transcription factor YY1 facilitated NR4A1 expression by binding with <i>NR4A1</i> promoter. In addition, in MPP<sup>+</sup>-treated SH-SY5Y cells, the inhibition of NR4A1 to apoptosis and oxidative stress was further enhanced by overexpression of YY1. The reduction of NR4A1 led to an elevation of apoptosis and oxidative stress in MPP<sup>+</sup>-induced SH-SY5Y cells, and this effect was partially reversed by the overexpression of YY1. In conclusion, YY1 suppresses MPP<sup>+</sup>-induced apoptosis and oxidative stress in SH-SY5Y cells by binding with <i>NR4A1</i> promoter and boosting NR4A1 expression. Our findings suggest that NR4A1 may be a candidate target for PD treatment.HIGHLIGHTSNR4A1 and YY1 are decreased in MPP<sup>+</sup>-treated SH-SY5Y cells.NR4A1 prevents oxidative stress and apoptosis in MPP<sup>+</sup>-treated SH-SY5Y cells.YY1 binds with <i>NR4A1</i> promoter and increases NR4A1 expression.YY1 enhances the inhibition of NR4A1 to SH-SY5Y cell apoptosis and oxidative stress.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":" ","pages":"115-123"},"PeriodicalIF":1.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71434299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A conserved function of Pkhd1l1, a mammalian hair cell stereociliary coat protein, in regulating hearing in zebrafish. 哺乳动物毛细胞立体纤毛外壳蛋白Pkhd1l1在调节斑马鱼听力中的保守功能。
IF 1.9 4区 医学
Journal of neurogenetics Pub Date : 2023-09-01 Epub Date: 2023-03-24 DOI: 10.1080/01677063.2023.2187792
Stylianos Makrogkikas, Ruey-Kuang Cheng, Hao Lu, Sudipto Roy
{"title":"A conserved function of Pkhd1l1, a mammalian hair cell stereociliary coat protein, in regulating hearing in zebrafish.","authors":"Stylianos Makrogkikas,&nbsp;Ruey-Kuang Cheng,&nbsp;Hao Lu,&nbsp;Sudipto Roy","doi":"10.1080/01677063.2023.2187792","DOIUrl":"10.1080/01677063.2023.2187792","url":null,"abstract":"<p><p><i>Pkhd1l1</i> is predicted to encode a very large type-I transmembrane protein, but its function has largely remained obscure. Recently, it was shown that Pkhdl1l1 is a component of the coat that decorates stereocilia of outer hair cells in the mouse ear. Consistent with this localization, conditional deletion of <i>Pkhd1l1</i> specifically from hair cells, was associated with progressive hearing loss. In the zebrafish, there are two paralogous <i>pkhd1l1</i> genes - <i>pkhd1l1α</i> and <i>pkhd1l1β.</i> Using CRISPR-Cas9 mediated gene editing, we generated loss-of-function alleles for both and show that the double mutants exhibit nonsense-mediated-decay (NMD) of the RNAs. With behavioural assays, we demonstrate that zebrafish <i>pkhd1l1</i> genes also regulate hearing; however, in contrast to <i>Pkhd1l1</i> mutant mice, which develop progressive hearing loss, the double mutant zebrafish exhibited statistically significant hearing loss even from the larval stage. Our data highlight a conserved function of <i>Pkhd1l1</i> in hearing and based on these findings from animal models, we postulate that <i>PKHD1L1</i> could be a candidate gene for sensorineural hearing loss (SNHL) in humans.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":" ","pages":"85-92"},"PeriodicalIF":1.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9240088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信