Carbamazepine responsive episodic dystonia and hallucination due to pyruvate dehydrogenase E2 (DLAT) gene mutation.

IF 1.8 4区 医学 Q3 GENETICS & HEREDITY
Journal of neurogenetics Pub Date : 2024-06-01 Epub Date: 2024-07-15 DOI:10.1080/01677063.2024.2372496
Jasmine Policherla, Fatema J Serajee, Salman Rashid, A H M Mahbubul Huq
{"title":"Carbamazepine responsive episodic dystonia and hallucination due to pyruvate dehydrogenase E2 (DLAT) gene mutation.","authors":"Jasmine Policherla, Fatema J Serajee, Salman Rashid, A H M Mahbubul Huq","doi":"10.1080/01677063.2024.2372496","DOIUrl":null,"url":null,"abstract":"<p><p>Pyruvate Dehydrogenase (PDH) E2 deficiency due to Dihydrolipoamide acetyltransferase (DLAT) mutations is a very rare condition with only nine reported cases to date. We describe a 15-year-old girl with mild intellectual disability, paroxysmal dystonia and bilateral basal ganglia signal abnormalities on brain magnetic resonance imaging (MRI). Additionally, neurophysiological, imaging, metabolic and exome sequencing studies were performed. Routine metabolite testing, and GLUT1 and PRRT2 mutation analysis were negative. A repeat brain MRI revealed 'Eye-of-the-tiger-sign'. Exome sequencing identified homozygous valine to glycine alteration at amino acid position 157 in the DLAT gene. Bioinformatic and family analyses indicated that the alteration was likely pathogenic. Patient's dystonia was responsive to low-dose carbamazepine. On weaning carbamazepine, patient developed hallucinations which resolved after carbamazepine was restarted. PDH E2 deficiency due to DLAT mutation has a more benign course compared to common forms of PDH E1 deficiency due to X-linked PDHA1 mutations. All known cases of PDH E2 deficiency due to DLAT mutations share the features of episodic dystonia and intellectual disability. Our patient's dystonia and hallucinations responded well to low-dose carbamazepine.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":" ","pages":"41-45"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01677063.2024.2372496","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Pyruvate Dehydrogenase (PDH) E2 deficiency due to Dihydrolipoamide acetyltransferase (DLAT) mutations is a very rare condition with only nine reported cases to date. We describe a 15-year-old girl with mild intellectual disability, paroxysmal dystonia and bilateral basal ganglia signal abnormalities on brain magnetic resonance imaging (MRI). Additionally, neurophysiological, imaging, metabolic and exome sequencing studies were performed. Routine metabolite testing, and GLUT1 and PRRT2 mutation analysis were negative. A repeat brain MRI revealed 'Eye-of-the-tiger-sign'. Exome sequencing identified homozygous valine to glycine alteration at amino acid position 157 in the DLAT gene. Bioinformatic and family analyses indicated that the alteration was likely pathogenic. Patient's dystonia was responsive to low-dose carbamazepine. On weaning carbamazepine, patient developed hallucinations which resolved after carbamazepine was restarted. PDH E2 deficiency due to DLAT mutation has a more benign course compared to common forms of PDH E1 deficiency due to X-linked PDHA1 mutations. All known cases of PDH E2 deficiency due to DLAT mutations share the features of episodic dystonia and intellectual disability. Our patient's dystonia and hallucinations responded well to low-dose carbamazepine.

丙酮酸脱氢酶E2(DLAT)基因突变导致的卡马西平反应性发作性肌张力障碍和幻觉。
二氢脂酰胺乙酰转移酶(DLAT)突变导致的丙酮酸脱氢酶(PDH)E2缺乏症是一种非常罕见的疾病,迄今仅有九例报道。我们描述了一名患有轻度智力障碍、阵发性肌张力障碍和脑磁共振成像(MRI)双侧基底节信号异常的 15 岁女孩。此外,还进行了神经电生理、成像、代谢和外显子组测序研究。常规代谢物检测、GLUT1 和 PRRT2 基因突变分析均为阴性。重复脑部核磁共振成像检查发现了 "虎眼征象"。外显子组测序发现,DLAT基因第157位氨基酸发生了从缬氨酸到甘氨酸的同源性改变。生物信息学和家族分析表明,该改变很可能是致病性的。患者的肌张力障碍对小剂量卡马西平有反应。在停用卡马西平后,患者出现幻觉,但在重新开始服用卡马西平后幻觉消失。与常见的由X连锁PDHA1突变导致的PDH E1缺乏症相比,由DLAT突变导致的PDH E2缺乏症的病程更为良性。所有已知的因DLAT突变导致的PDH E2缺乏症病例都具有发作性肌张力障碍和智力残疾的特征。我们患者的肌张力障碍和幻觉对小剂量卡马西平反应良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of neurogenetics
Journal of neurogenetics 医学-神经科学
CiteScore
4.40
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: The Journal is appropriate for papers on behavioral, biochemical, or cellular aspects of neural function, plasticity, aging or disease. In addition to analyses in the traditional genetic-model organisms, C. elegans, Drosophila, mouse and the zebrafish, the Journal encourages submission of neurogenetic investigations performed in organisms not easily amenable to experimental genetics. Such investigations might, for instance, describe behavioral differences deriving from genetic variation within a species, or report human disease studies that provide exceptional insights into biological mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信