Journal of Neuroscience Research最新文献

筛选
英文 中文
D1 Receptor Functional Asymmetry at Striatonigral Neurons: A Neurochemical and Behavioral Study in Male Wistar Rats 雄性Wistar大鼠纹状体神经元D1受体功能不对称的神经化学和行为研究。
IF 2.9 3区 医学
Journal of Neuroscience Research Pub Date : 2024-12-31 DOI: 10.1002/jnr.70014
Ihosvany Rodríguez Pérez, José Arturo Avalos-Fuentes, Francisco Paz-Bermúdez, Hernan Cortes, Gisela Tovar Medina, Rafael Jijón-Lorenzo, Benjamín Florán
{"title":"D1 Receptor Functional Asymmetry at Striatonigral Neurons: A Neurochemical and Behavioral Study in Male Wistar Rats","authors":"Ihosvany Rodríguez Pérez,&nbsp;José Arturo Avalos-Fuentes,&nbsp;Francisco Paz-Bermúdez,&nbsp;Hernan Cortes,&nbsp;Gisela Tovar Medina,&nbsp;Rafael Jijón-Lorenzo,&nbsp;Benjamín Florán","doi":"10.1002/jnr.70014","DOIUrl":"10.1002/jnr.70014","url":null,"abstract":"<div>\u0000 \u0000 <p>Lateralization of motor behavior, a common phenomenon in humans and several species, is modulated by the basal ganglia, a site pointed out for the interhemispheric differences related to lateralization. Our study aims to shed light on the potential role of the striatonigral D1 receptor in functional asymmetry in normal conditions through neurochemical and behavioral means. We found that D1 receptor activation and D1/D3 receptor coactivation in striatonigral neurons leads to more cAMP production by adenylyl cyclase in the striatum and GABA release in their terminals in the right hemisphere compared to the left. These differences are linked to a higher receptor sensitivity and potentially a better coupling of G<sub>olf</sub> proteins. When we assessed motor behavior through intranigral injection of the D1 receptor agonist SKF 38393 in the left or right substantia nigra, we found higher contralateral circling when injected on the right side. Thus, differences in motor activity correlate with neurochemical data, indicating that D1 receptor signaling plays a significant role in motor asymmetry.</p>\u0000 </div>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"103 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Efficacy of Remote Ischemic Conditioning and Hypothermia in Permanent and Transient Cerebral Ischemia in Male Mice 远距离缺血调节和低温治疗雄性小鼠永久性和短暂性脑缺血的疗效比较。
IF 2.9 3区 医学
Journal of Neuroscience Research Pub Date : 2024-12-25 DOI: 10.1002/jnr.70003
Moeko Saito, Takao Hoshino, Kentaro Ishizuka, Yoichiro Kato, Noriyuki Shibata, Kazuo Kitagawa
{"title":"Comparative Efficacy of Remote Ischemic Conditioning and Hypothermia in Permanent and Transient Cerebral Ischemia in Male Mice","authors":"Moeko Saito,&nbsp;Takao Hoshino,&nbsp;Kentaro Ishizuka,&nbsp;Yoichiro Kato,&nbsp;Noriyuki Shibata,&nbsp;Kazuo Kitagawa","doi":"10.1002/jnr.70003","DOIUrl":"10.1002/jnr.70003","url":null,"abstract":"<div>\u0000 \u0000 <p>Remote ischemic conditioning (RIC) has attracted considerable attention as a brain protection strategy, although its impact remains unclear. Hypothermia is the most effective strategy in experimental transient cerebral ischemia. Therefore, we compared the efficacy of RIC, hypothermia, and no treatment on cerebral ischemia. We assessed the effects of both permanent and transient middle cerebral artery occlusion (MCAO) for 45 min in male mice. Brain hemodynamics were monitored during and after the procedure via 2D color-coded ultrasound imaging. Ischemic lesions on magnetic resonance imaging (MRI)–diffusion-weighted imaging (DWI), early breakdown of microtubule-associated protein 2 (MAP2), expression levels of inflammatory cytokines by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), and neurological signs and infarct volume were examined. In permanent MCAO, RIC increased cerebral blood flow (CBF) in the peri-infarct area, reduced early lesions on MRI–DWI, decreased early MAP2 breakdown, and lowered infarct volume compared with no treatment. However, hypothermia only showed a protective effect against neurological signs. In contrast, in transient MCAO, both RIC and hypothermia reduced the expression of inflammatory cytokines, mitigated MAP2 breakdown, and reduced infarct volume to a similar extent compared with no treatment. In conclusion, although RIC proved to be more effective than hypothermia in permanent MCAO, the protective effects of RIC and hypothermia were comparable in transient cerebral ischemia. Thus, RIC could be a promising strategy for brain protection against cerebral ischemia.</p>\u0000 </div>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"102 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142895547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oligodendrocytes in Huntington's Disease: A Review of Oligodendrocyte Pathology and Current Cell Reprogramming Approaches for Oligodendrocyte Modelling of Huntington's Disease 亨廷顿舞蹈病中的少突胶质细胞:综述少突胶质细胞病理学和目前用于亨廷顿舞蹈病少突胶质细胞模型的细胞重编程方法。
IF 2.9 3区 医学
Journal of Neuroscience Research Pub Date : 2024-12-23 DOI: 10.1002/jnr.70010
Amelie Marie Back, Bronwen Connor, Amy McCaughey-Chapman
{"title":"Oligodendrocytes in Huntington's Disease: A Review of Oligodendrocyte Pathology and Current Cell Reprogramming Approaches for Oligodendrocyte Modelling of Huntington's Disease","authors":"Amelie Marie Back,&nbsp;Bronwen Connor,&nbsp;Amy McCaughey-Chapman","doi":"10.1002/jnr.70010","DOIUrl":"10.1002/jnr.70010","url":null,"abstract":"<div>\u0000 \u0000 <p>Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder traditionally characterized by the selective loss of medium spiny neurons in the basal ganglia. However, it has become apparent that white matter injury and oligodendrocyte dysfunction precede the degeneration of medium spiny neurons, garnering interest as a key pathogenic mechanism of HD. Oligodendrocytes are glial cells found within the central nervous system involved in the production of myelin and the myelination of axons. Myelin is a lipid-rich sheath that wraps around axons, facilitating signal conduction and neuronal viability. The degeneration of myelin hinders effective communication and leaves neurons vulnerable to external damage and subsequent degeneration. Abnormalities in oligodendrocyte maturation have been established in the HD human brain, however, investigations into the underlying dysfunction of human oligodendrocytes in HD are limited. This review will detail the involvement of oligodendrocytes and white matter damage in HD. Recent developments in modeling human-specific oligodendrocyte pathology in HD will be discussed, with a particular focus on emerging somatic cell reprogramming approaches.</p>\u0000 </div>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"102 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dipyridamole Ameliorates Memory Impairment and Increases Hippocampal Calbindin Expression in Niemann Pick C1 Mice 双嘧达莫改善Niemann Pick C1小鼠记忆损伤和海马Calbindin表达增加。
IF 2.9 3区 医学
Journal of Neuroscience Research Pub Date : 2024-12-23 DOI: 10.1002/jnr.70011
Lucia Gaddini, Valentina Chiodi, Andrea Matteucci, Zaira Boussadia, Luc Buée, Sabiha Eddarkaoui, David Blum, Nazzareno Di Carlo, Carla Raggi, Rita Di Benedetto, Patrizia Popoli, Antonella Ferrante
{"title":"Dipyridamole Ameliorates Memory Impairment and Increases Hippocampal Calbindin Expression in Niemann Pick C1 Mice","authors":"Lucia Gaddini,&nbsp;Valentina Chiodi,&nbsp;Andrea Matteucci,&nbsp;Zaira Boussadia,&nbsp;Luc Buée,&nbsp;Sabiha Eddarkaoui,&nbsp;David Blum,&nbsp;Nazzareno Di Carlo,&nbsp;Carla Raggi,&nbsp;Rita Di Benedetto,&nbsp;Patrizia Popoli,&nbsp;Antonella Ferrante","doi":"10.1002/jnr.70011","DOIUrl":"10.1002/jnr.70011","url":null,"abstract":"<p>Niemann Pick type C1 (NPC1) is a rare, fatal disorder characterized by endosomal lipid accumulation that leads to damage of both peripheral organs and central nervous system (cerebellum and hippocampus are especially affected). Currently, miglustat is the only approved drug for NPC1, thus the identification of new treatments is mandatory. We have previously demonstrated that the drug dipyridamole (DIP), an enhancer of adenosine signaling, can reduce the pathological phenotype in patient-derived fibroblasts. In this paper, we evaluated the <i>in vivo</i> effects of DIP in NPC1 mice. Male and female NPC1<sup>nih</sup> mice were treated with DIP 30 mg/kg i.p. from 28 to 64 days of age. Motor function was assessed by Erasmus Ladder test, hippocampal cognitive decline by Novel Object Recognition test and brain pathology by immunofluorescence and biochemical assays. Peripheral pathology was evaluated by analyzing lipid accumulation in spleen and liver (HP-TLC). In NPC1, mice DIP rescued recognition memory and increased hippocampal expression of calbindin. On the contrary, the drug was unable to improve motor function, cerebellar pathology and lipid accumulation in spleen and liver. Our results demonstrated that DIP selectively ameliorates the cognitive impairment in NPC1 mice. This drug could thus represent a valuable therapeutic tool to be used in combination with other treatments in NPC1.</p>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"102 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jnr.70011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engrailed1 in Parvalbumin-Positive Neurons Regulates Eye-Specific Retinogeniculate Segregation and Visual Function parvalbuin阳性神经元中的Engrailed1调节眼睛特异性视网膜原环分离和视觉功能。
IF 2.9 3区 医学
Journal of Neuroscience Research Pub Date : 2024-12-20 DOI: 10.1002/jnr.70007
Yuqing Chen, Chengyong Jiang, Biao Yan, Jiayi Zhang
{"title":"Engrailed1 in Parvalbumin-Positive Neurons Regulates Eye-Specific Retinogeniculate Segregation and Visual Function","authors":"Yuqing Chen,&nbsp;Chengyong Jiang,&nbsp;Biao Yan,&nbsp;Jiayi Zhang","doi":"10.1002/jnr.70007","DOIUrl":"10.1002/jnr.70007","url":null,"abstract":"<div>\u0000 \u0000 <p>Homeobox transcription factor Engrailed1 (En1) is expressed in the ectoderm and mediates the establishment of retinotectal topography, but its role in eye-specific retinogeniculate segregation and visual function remains unclear. Parvalbumin (PV) neurons, which are widely distributed in the visual pathway, play a crucial role in visual development and function. In this study, we conditionally knocked out En1 gene in PV neurons and found an expansion of the ipsilateral eye projection, while no significant effects were observed in the contralateral eye projection. Additionally, we observed a decrease in the number of PV neurons in PV-Cre:En1<sup>fl/fl</sup> mice, accompanied by an increased level of cleaved caspase-3 in PV neurons. Furthermore, the genetic ablation of PV neurons in the retina through intraocular AAV-DIO-Caspase3 injection in PV-Cre mice was sufficient to disrupt retinogeniculate segregation. Finally, we observed that PV-Cre:En1<sup>fl/fl</sup> mice exhibited enhanced visual depth perception in the visual cliff test. These results demonstrate that En1 in PV neurons participates in eye-specific retinogeniculate segregation through cell survival and regulates binocular vision.</p>\u0000 </div>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"102 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Open-Source Tool for Investigation of Differential RNA Expression Between Spinal Cord Cells of Male and Female Mice 一个研究雌雄小鼠脊髓细胞差异RNA表达的开源工具。
IF 2.9 3区 医学
Journal of Neuroscience Research Pub Date : 2024-12-14 DOI: 10.1002/jnr.70008
Justin Bellavance, Laurence S. David, Michael E. Hildebrand
{"title":"An Open-Source Tool for Investigation of Differential RNA Expression Between Spinal Cord Cells of Male and Female Mice","authors":"Justin Bellavance,&nbsp;Laurence S. David,&nbsp;Michael E. Hildebrand","doi":"10.1002/jnr.70008","DOIUrl":"10.1002/jnr.70008","url":null,"abstract":"<p>Chronic pain is a highly debilitating condition that differs by type, prevalence, and severity between men and women. To uncover the molecular underpinnings of these differences, it is critical to analyze the transcriptomes of spinal cord pain-processing networks for both sexes. Despite several recently published single-nucleus RNA-sequencing (snRNA-seq) studies on the function and composition of the mouse spinal cord, a gene expression analysis investigating the differences between males and females has yet to be performed. Here, we combined data from three different large-scale snRNA-seq studies, which used sex-identified adult mice. Using SeqSeek, we classified more than 37,000 unique viable cells within predicted cell types with the use of machine learning. We then utilized DESeq2 to identify significant differentially expressed genes (DEGs) between males and females in a variety of cell populations, including superficial dorsal horn (SDH) neurons. We found a large number of DEGs between males and females in all cells, in neurons, and in SDH neurons of the mouse spinal cord, with a greater level of differential expression in inhibitory SDH neurons compared to excitatory SDH neurons. The results of these analyses are available on an open-source web-app: https://justinbellavance.shinyapps.io/snRNA_Visualization/. Lastly, we used gene set enrichment analysis to identify sex-enriched pathways from our previously identified DEGs. Through this, we have identified specific genetic players within the rodent spinal cord that diverge between males and females, which may underlie reported sex differences in spinal nociceptive mechanisms and pain processing.</p>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"102 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anxiety-Like Behaviors in Mice Unmasked: Revealing Sex Differences in Anxiety Using a Novel Light-Heat Conflict Test 揭露小鼠的焦虑样行为:使用一种新的光-热冲突测试揭示焦虑的性别差异。
IF 2.9 3区 医学
Journal of Neuroscience Research Pub Date : 2024-12-09 DOI: 10.1002/jnr.70002
Sydney E. Lee, Sung-Hoon Park, John C. Aldrich, Laura K. Fonken, Andrew D. Gaudet
{"title":"Anxiety-Like Behaviors in Mice Unmasked: Revealing Sex Differences in Anxiety Using a Novel Light-Heat Conflict Test","authors":"Sydney E. Lee,&nbsp;Sung-Hoon Park,&nbsp;John C. Aldrich,&nbsp;Laura K. Fonken,&nbsp;Andrew D. Gaudet","doi":"10.1002/jnr.70002","DOIUrl":"10.1002/jnr.70002","url":null,"abstract":"<div>\u0000 \u0000 <p>Anxiety and chronic pain afflict hundreds of millions worldwide. Anxiety and pain are more prevalent in females compared to males. Unfortunately, robust sex differences in human anxiety are not recapitulated in rodent tests, and results from rodent pain studies frequently fail to translate clinically. Therefore, there is a need to develop tests that reflect the differential salience of anxiety or pain-related stimuli between the sexes. Accordingly, here we introduce the Thermal Increments Dark–Light (TIDAL) conflict test. The TIDAL test places an anxiety-relevant stimulus (dark vs. illuminated chamber) in conflict with a heat-related stimulus (incrementally heated vs. isothermic chamber); mice freely explore both apparatus chambers. Here, we aim to determine whether the TIDAL conflict test reveals in mice underappreciated sex differences in anxiety and/or heat sensitivity. We establish in four distinct experiments that females on the TIDAL conflict test persist substantially longer on the dark-heated plate, suggesting that female mice exhibit elevated anxiety-like behavior. Mice more strongly prefer the heated-dark plate on the TIDAL conflict test compared to control thermal place preference with both chambers illuminated. We also reveal that an anxiety-relieving drug, paroxetine, reduces mouse preference for the heating dark plate, supporting the validity of the TIDAL test. Therefore, our new TIDAL conflict test reliably unmasks the relative salience of anxiety (vs. heat sensitivity): mice that are female exhibit robust anxiety-like behaviors not consistently observed in classical tests. Future studies should incorporate TIDAL and other conflict tests to better understand rodent behavior and to identify mechanisms underlying anxiety and pain.</p>\u0000 </div>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"102 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “What Do Brain Oscillations Tell About the Human Sense of Smell?” 更正 "大脑振荡对人类嗅觉有何启示?
IF 2.9 3区 医学
Journal of Neuroscience Research Pub Date : 2024-12-09 DOI: 10.1002/jnr.70009
{"title":"Correction to “What Do Brain Oscillations Tell About the Human Sense of Smell?”","authors":"","doi":"10.1002/jnr.70009","DOIUrl":"10.1002/jnr.70009","url":null,"abstract":"<p>Mignot, C., Weise, S., Podlesek, D., Leonhardt, G., Bensafi, M., &amp; Hummel, T. (2024). What do brain oscillations tell about the human sense of smell? <i>Journal of Neuroscience Research</i>, <i>102</i>, e25335. https://doi.org/10.1002/jnr.25335</p><p>In Figure 1, some of the labels in the panel summarizing the different brain structures involved in smell processing were incorrectly placed.</p><p>The corrected figure and caption appear below.</p><p>We apologize for the error.</p>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"102 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jnr.70009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurologic Music Therapy's Impact on Neurological Disorders 神经音乐疗法对神经系统疾病的影响
IF 2.9 3区 医学
Journal of Neuroscience Research Pub Date : 2024-12-03 DOI: 10.1002/jnr.70000
Yaming Wei, Zhen Qiao
{"title":"Neurologic Music Therapy's Impact on Neurological Disorders","authors":"Yaming Wei,&nbsp;Zhen Qiao","doi":"10.1002/jnr.70000","DOIUrl":"https://doi.org/10.1002/jnr.70000","url":null,"abstract":"<div>\u0000 \u0000 <p>Neurologic music therapy (NMT) represents a groundbreaking, interdisciplinary approach that combines the therapeutic properties of music with neuroscientific principles to treat a range of neurological and psychiatric conditions. This interdisciplinary approach, increasingly recognized in clinical and research settings, leverages advances in neuroimaging to explore how music affects the structure and activity of the brain. This review provides an in-depth exploration of the multifaceted effects of NMT on brain function, highlighting its role in promoting neuroplastic changes and enhancing cognitive, emotional and motor functions in diverse patient groups. This review consolidates current knowledge on NMT and provides insights into how music affects brain structure and function and the mechanisms of action. The article then discusses the application and research results of NMT in various diseases such as stroke, Alzheimer's disease and Parkinson's disease. Its potential in personalizing therapeutic interventions and its ability to improve treatment access and effectiveness in various settings are highlighted.</p>\u0000 </div>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"102 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mild Traumatic Brain Injury Is Associated With Increased Thalamic Subregion Volume in the Subacute Period Following Injury 轻度创伤性脑损伤与损伤后亚急性期丘脑亚区体积增加有关
IF 2.9 3区 医学
Journal of Neuroscience Research Pub Date : 2024-12-03 DOI: 10.1002/jnr.70004
Maggie E. Baird, Richard Beare, Marc L. Seal, Joseph Yuan-Mou Yang, Jacqueline F. I. Anderson
{"title":"Mild Traumatic Brain Injury Is Associated With Increased Thalamic Subregion Volume in the Subacute Period Following Injury","authors":"Maggie E. Baird,&nbsp;Richard Beare,&nbsp;Marc L. Seal,&nbsp;Joseph Yuan-Mou Yang,&nbsp;Jacqueline F. I. Anderson","doi":"10.1002/jnr.70004","DOIUrl":"https://doi.org/10.1002/jnr.70004","url":null,"abstract":"<div>\u0000 \u0000 <p>Structural vulnerability of the thalamus remains underinvestigated in mild traumatic brain injury (mTBI), and few studies have addressed its constituent nuclei using robust segmentation methods. This study aimed to investigate thalamic subnuclei volume in the subacute period following mTBI. Trauma control (TC) and mTBI patients aged 18–60 years old completed a magnetic resonance imaging (MRI) protocol including both high resolution structural (T1w) and diffusion-weighted sequences at 6–12 weeks following injury (mean: 57 days; SD 11). Each thalamus was segmented into its constituent subnuclei, which were grouped into eight lateralized subregions. Volumes of the subregions were calculated. Neurite Orientation Dispersion and Density (NODDI) maps with parameters optimized for gray matter were computed for the same subregions. Group differences in subregion volumes and NODDI parameters were investigated using Bayesian linear modeling, with age, sex, and estimated intracranial volume included as covariates. Comparisons of mTBI (<i>n</i> = 39) and TC (<i>n</i> = 28) groups revealed evidence of relatively increased gray matter volume in the mTBI group for the bilateral medial and right intralaminar subregions (BF<sub>10</sub> &gt; 3). Of the subregions which showed volume differences, there was no evidence for differences in NODDI metrics between groups. This study demonstrates that in the subacute period following mTBI, there is evidence of increased volume in specific thalamic subregions. Putative mechanisms underpinning the increased volume observed here are disordered remyelination or myelin debris yet to be cleared.</p>\u0000 </div>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"102 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信