{"title":"Acoustic and acousto-optic properties of Ga10Ge15Te75 glass","authors":"V.S. Khorkin , E.I. Kostyleva , S.N. Mantsevich , A.P. Velmuzhov , E.A. Tyurina , M.V. Sukhanov , V.S. Shiryaev","doi":"10.1016/j.jnoncrysol.2024.123299","DOIUrl":"10.1016/j.jnoncrysol.2024.123299","url":null,"abstract":"<div><div>The acoustic and acousto-optic (AO) properties of the Ga<sub>10</sub>Ge<sub>15</sub>Te<sub>75</sub> glass, which is promising for creation of AO devices operating with the near and middle infrared optical radiation, are studied. In this paper, the experimental results for the longitudinal and shear acoustic waves phase velocities and the AO figure of merit (<em>M</em><sub>2</sub>) in case of isotropic diffraction by these waves are presented. All measurements are carried out for the 3.39 µm optical wavelength. The obtained <em>M</em><sub>2</sub> magnitudes turned out to be close to 1000·10<sup>–15</sup>s<sup>3</sup>/kg that significantly exceeds the typical values observed in germanium (Ge) crystal – the basic material for middle infrared AO devices fabrication. The experimentally determined longitudinal acoustic wave attenuation coefficient for 100 MHz ultrasound frequency turns out to be 1.32 ± 0.05 cm<sup>-1</sup>. Finally, the acoustic and AO properties of telluride based glasses with the close chemical composition, namely Ga<sub>10</sub>Ge<sub>15</sub>Te<sub>75</sub>, Si<sub>25</sub>Te<sub>75</sub> and Ge<sub>25</sub>Se<sub>15</sub>Te<sub>60</sub> glasses, are compared.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"648 ","pages":"Article 123299"},"PeriodicalIF":3.2,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural and dynamic heterogeneities in Cu50Zr50 and Ni50Zr50 Metallic Glasses","authors":"Chengqiao Yang, Minhua Sun","doi":"10.1016/j.jnoncrysol.2024.123305","DOIUrl":"10.1016/j.jnoncrysol.2024.123305","url":null,"abstract":"<div><div>Structural heterogeneity plays a key role in the dynamics and physical properties of metallic glasses. To date, there has been a lack of an effective and general parameter to describe and compare structural heterogeneity among different alloys. In this study, we introduce a new parameter, the spatial heterogeneity coefficient, to quantify the microstructural heterogeneity among metallic glasses (MGs). Using it, we investigated the microstructural heterogeneity of Cu50Zr50 and Ni50Zr50 MGs. We found that the Cu50Zr50 alloy shows higher structural heterogeneity than Ni50Zr50 across all temperatures, as observed from both five- and four-fold symmetric perspectives. Concurrently, Cu50Zr50 displays stronger dynamic heterogeneity and stronger dynamics fragility as it approaches the glass transition. These characteristics endow Cu50Zr50 with a higher GFA than Ni50Zr50 MG. This study provides a novel approach to understanding the structural heterogeneity in MGs and its impact on their dynamic behavior.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"647 ","pages":"Article 123305"},"PeriodicalIF":3.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Israel F. Cardoso , Raí F. Jucá , Francisco G.S. Oliveira , Igor F. Vasconcelos , Gilberto D. Saraiva , Meirielle M. de Góis , Vinicius P.S. Caldeira , Keurison F. Magalhães , João M. Soares
{"title":"Asperomagnetism and speromagnetism in magnetic aluminosilicate glasses","authors":"Israel F. Cardoso , Raí F. Jucá , Francisco G.S. Oliveira , Igor F. Vasconcelos , Gilberto D. Saraiva , Meirielle M. de Góis , Vinicius P.S. Caldeira , Keurison F. Magalhães , João M. Soares","doi":"10.1016/j.jnoncrysol.2024.123285","DOIUrl":"10.1016/j.jnoncrysol.2024.123285","url":null,"abstract":"<div><div>In this research, we make use of mineral waste composite with elemental composition of Si, Al, Ca, Mg, K and Fe to synthesize magnetic aluminosilicate glasses (MAGlass). The produced MAGlass presented interesting magnetic and optical properties due to the presence of iron with different valence states. The elemental composition was measured by X-ray fluorescence spectroscopy. X-ray diffraction analysis confirmed the glass amorphous nature. Thermal properties such as glass transition temperature and thermal stability were analyzed by differential scanning calorimetry. The nature of the glass chemical bond structure was studied by FT-Raman analysis. UV–Vis spectroscopy studied the transmittance and absorbance in each sample, approaching the main electronic transitions, Racah parameters and gap energy. Mössbauer and magnetization measurements showed different iron valency states and interesting asperomagnetism and speromagnetism behaviors, with variations among the Fe<sup>2+</sup> and Fe<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn><mo>+</mo></mrow></msup></math></span> in the MAGlass samples.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"647 ","pages":"Article 123285"},"PeriodicalIF":3.2,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hailong Dong , Fangling Jiang , Min Qian , Tianfeng Xue , Sijun Fan , Minzhi Ruan , Zhongdi Li , Shubin Chen , Lu Deng
{"title":"Oxidation states and structural role of iron in sodium iron aluminophosphate glass: A combined study of XAFS experiments and MD simulations","authors":"Hailong Dong , Fangling Jiang , Min Qian , Tianfeng Xue , Sijun Fan , Minzhi Ruan , Zhongdi Li , Shubin Chen , Lu Deng","doi":"10.1016/j.jnoncrysol.2024.123303","DOIUrl":"10.1016/j.jnoncrysol.2024.123303","url":null,"abstract":"<div><div>Vitrification has gained global recognition as one of the most mature techniques for solidification of high-level nuclear waste, and borosilicate glass has been widely used in various countries as the base material. However, iron aluminophosphate glass also found advantages in solidify waste forms containing high concentrations of Zr, Mo and rare earth elements. In this work, oxidation states of Fe and its structural role of sodium iron aluminophosphate glass have been investigated using X-ray absorption fine structure spectroscopy experiments and molecular dynamic simulations. Results show that both the Fe<sup>2+</sup> concentration and the average phosphorus number around Fe increase with the replacement of Na by Fe; whereas, the average oxygen number around Fe decreases. Fe<sup>2+</sup> ions are mainly four-coordinated, and Fe<sup>3+</sup> ions are mainly five-coordinated. Moreover, additional Fe content leads to the gradual replacement of Al/P–O–P linkages by Fe<sup>2+</sup>–O–P linkages, resulting in the enhancement of the chemical durability of the glass.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"647 ","pages":"Article 123303"},"PeriodicalIF":3.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Surface of silicate glass exposed to water","authors":"Ondrej Gedeon , Jana Houdkova , Petr Jiricek","doi":"10.1016/j.jnoncrysol.2024.123298","DOIUrl":"10.1016/j.jnoncrysol.2024.123298","url":null,"abstract":"<div><div>The surface and subsurface of commercial barium glassware were studied. The glass was exposed to water and annealing conditions. The decomposed oxygen peak shows the presence of hydrogen bonds to oxygen. Comparison of the amount of OH bonds obtained from oxygen peak decomposition with the amount obtained by the model on the basis of the charge balance shows a discrepancy, which is explained by the oversimplification of the model, which assumes the ideality of the glass structure. The results show that the silica subnetwork in the subsurface region is stable under the conditions used in the experiments. The amount of oxygen is kept constant during water leaching/annealing experiments, but oxygen can change among non-bridging oxygen, dangling/defect oxygen (DO) or H<sub>2</sub>O/OH states according to the conditions under which the glass is exposed. Alkalis migrating into the alkali-depleted area during annealing prefer to replace hydrogen rather than bind to DO.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"647 ","pages":"Article 123298"},"PeriodicalIF":3.2,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yun-Li Li , Wen-Ping Wu , Daniel Şopu , Jürgen Eckert
{"title":"Molecular dynamics simulation of shock-induced plastic deformation and spallation behavior of Cu/Cu64Zr36 crystalline/amorphous composites","authors":"Yun-Li Li , Wen-Ping Wu , Daniel Şopu , Jürgen Eckert","doi":"10.1016/j.jnoncrysol.2024.123300","DOIUrl":"10.1016/j.jnoncrysol.2024.123300","url":null,"abstract":"<div><div>Molecular dynamics (MD) simulations were performed to study the shock-induced plastic deformation and spallation failure of Cu/Cu<sub>64</sub>Zr<sub>36</sub> crystalline/amorphous composites with a pre-existing void. The results show that the pre-existing void collapses always perpendicular to the direction of the shock loading, regardless of whether the shock direction starts from the crystalline phase or the amorphous phase. The Cu/Cu<sub>64</sub>Zr<sub>36</sub> composites are more prone to spallation failure when the shock starts from the Cu crystalline phase. The changes of dislocation density and shear transformation zone (STZ) activation are closely related to the magnitude and direction of shock velocity. When the shock velocity reaches 2.0 km/s, dislocations in the crystalline phase disappear, dislocation density is close to zero and STZs activate throughout the entire amorphous phase. In addition, regardless of the shock velocity and direction, no shear bands are generated in the Cu/Cu<sub>64</sub>Zr<sub>36</sub> composites under shock loading, which is significantly different from the case of tensile loading.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"647 ","pages":"Article 123300"},"PeriodicalIF":3.2,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Configuration entropy and non-Arrhenius behavior in the α relaxation of glassy dielectrics","authors":"Jean-Pierre Crine","doi":"10.1016/j.jnoncrysol.2024.123279","DOIUrl":"10.1016/j.jnoncrysol.2024.123279","url":null,"abstract":"<div><div>Applying Eyring equation to experimental data for the α relaxation of glassy dielectrics shows the fundamental role of the activation entropy in the relaxation dynamics. The combination of Eyring equation and compensation law gives access to other important parameters, such as the compensation temperature and the absolute value of the configurational activation entropy, ΔS<sub>C</sub>, in the Arrhenius regime. The non linear behavior observed at low temperatures is explained by the time and temperature variation of the configurational activation entropy. We propose that this change corresponds to the rarefaction of free equilibrium states as T is lowered. A simple method is proposed to calculate ΔS<sub>C</sub> from the change of free energy in the non linear regime. The lowest temperature limit of the a relaxation is not known but it seems unlikely that it would be the VTF or the Kauzmann temperatures. Brief comments on the physical significance of these two parameters are made. It is also shown that relaxation times are not invariant, as sometime suggested</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"647 ","pages":"Article 123279"},"PeriodicalIF":3.2,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bo Wang , Zihao Pan , Ziyan Zhao , Bo Zhou , Xuejian Liu , Zhengren Huang , Yan Liu
{"title":"Investigation of ZnO-B2O3-SiO2 glass and its application for joining AlN ceramic","authors":"Bo Wang , Zihao Pan , Ziyan Zhao , Bo Zhou , Xuejian Liu , Zhengren Huang , Yan Liu","doi":"10.1016/j.jnoncrysol.2024.123297","DOIUrl":"10.1016/j.jnoncrysol.2024.123297","url":null,"abstract":"<div><div>In this paper, we designed two series of the ZnO-B<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> (ZBS) glass to explore their applicability for joining AlN ceramic. The density, flexural strength, structure, characteristic temperature, coefficient of thermal expansion (CTE) and crystallization behavior of the ZBS glass with varying ZnO and B<sub>2</sub>O<sub>3</sub> content were systematically studied. The results show that as B<sub>2</sub>O<sub>3</sub> content increase, the glass network is disrupted with the transition from three-dimensional shelf-like structure [BO<sub>4</sub>] to two-dimensional layers [BO<sub>3</sub>], increasing the number of the broken bonds, while an increase in ZnO results in a more compact glass network structure. We also found that both glass transition temperature (T<sub>g</sub>) and softening temperature (T<sub>S</sub>) exhibit a declining trend with the increase in B<sub>2</sub>O<sub>3</sub> and ZnO. Zn<sub>2</sub>SiO<sub>4</sub> and ZnAl<sub>2</sub>O<sub>4</sub>, began to precipitate after heat treatments in all the samples except 60ZnO-30B<sub>2</sub>O<sub>3</sub>–10SiO<sub>2</sub> (abbreviated as B30), where the diffraction peaks do not appear in Zn<sub>2</sub>SiO<sub>4</sub> but in Zn<sub>4</sub>B<sub>6</sub>O<sub>13</sub>. Notably, Zn<sub>2</sub>SiO<sub>4</sub> is the main phase for most samples while the main phase of B30 sample is ZnAl<sub>2</sub>O<sub>4</sub>. The CTE increases from 4.6 to 5.03 (× 10<sup>–6</sup>/ °C) and 4.23 to 4.73 (× 10<sup>–6</sup>/ °C) with an increase of B<sub>2</sub>O<sub>3</sub> and ZnO content, respectively. Among these, the CTE of B30 sample is compatible with that of AlN ceramic substrate. The optimal shear strength, 60.32±10.26 MPa, was achieved with B30 samples at 750 °C. The high strength was attributed to the interfacial reaction that leads to strong chemical bonding and the uniform distribution of the ZnAl<sub>2</sub>O<sub>4</sub> in the interlayer, which reinforces the strength of the interlayer itself.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"647 ","pages":"Article 123297"},"PeriodicalIF":3.2,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating sulfur valence depth profile on float glass surfaces using electron probe microanalysis and stepwise etching","authors":"Yoshitaka Saijo, Susumu Harako","doi":"10.1016/j.jnoncrysol.2024.123282","DOIUrl":"10.1016/j.jnoncrysol.2024.123282","url":null,"abstract":"<div><div>This study introduces a novel method that significantly improves the understanding of sulfur behavior during the float process, which is a key factor for achieving high-quality glass surfaces. We established and demonstrated a novel approach that combines an optimized electron probe micro-analyzer with a stepwise etching technique for obtaining detailed depth profiling of sulfur concentrations as well as the average valence of sulfur on the surfaces of a float glass sample. The average valence of sulfur from each side of the float glass mirrored each other, exhibiting lower values near the surfaces and higher values internally. A reduced layer extending up to approximately 5 μm on both sides was also present. On the atmosphere side, the reduced layer transitioned abruptly to the oxidized layer. In contrast, the tin side featured an intermediate redox layer, where the sulfur valence gradually increased. We proposed two mechanisms for the formation of this intermediate layer: an inward sulfide diffusion, and an oxidation–reduction reaction involving Sn<sup>2+</sup> penetrated from the tin bath.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"647 ","pages":"Article 123282"},"PeriodicalIF":3.2,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaohui Jing , Songlin Cai , Xianqian Wu , Lanhong Dai , Minqiang Jiang
{"title":"The rebound law of micro-particle on amorphous alloys under high impact velocities","authors":"Xiaohui Jing , Songlin Cai , Xianqian Wu , Lanhong Dai , Minqiang Jiang","doi":"10.1016/j.jnoncrysol.2024.123274","DOIUrl":"10.1016/j.jnoncrysol.2024.123274","url":null,"abstract":"<div><div>Compared to their crystalline counterparts, amorphous alloys due to disordered structures are expected to have higher elasticity of deformation. However, in this work, we use the micro-ballistic impact technique to show a smaller dynamic redound of micro-particles on a Zr-based amorphous alloy than that on its corresponding polycrystalline target. We find that the two alloys follow the same rebound law of micro-particle under low impact velocities, but with increasing impact velocity the amorphous alloy exhibits a faster decrease in rebound velocity of micro-particle. This lower rebound results from the easier activations of shear banding in glassy structures, thus contributing to more significant energy dissipation during the micro-particle impact. Further analyses imply that the amorphous alloys and their crystalline counterparts are more favorable in shock wave and projectile protection, respectively. This work is useful in the understanding of the dynamic elasticity and shock energy dissipation of amorphous alloys under micro-particle impacts.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"647 ","pages":"Article 123274"},"PeriodicalIF":3.2,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}