Journal of Multivariate Analysis最新文献

筛选
英文 中文
Matrix-valued isotropic covariance functions with local extrema 具有局部极值的矩阵值各向同性协方差函数
IF 1.6 3区 数学
Journal of Multivariate Analysis Pub Date : 2023-11-18 DOI: 10.1016/j.jmva.2023.105250
Alfredo Alegría , Xavier Emery
{"title":"Matrix-valued isotropic covariance functions with local extrema","authors":"Alfredo Alegría ,&nbsp;Xavier Emery","doi":"10.1016/j.jmva.2023.105250","DOIUrl":"https://doi.org/10.1016/j.jmva.2023.105250","url":null,"abstract":"<div><p>Multivariate random fields are commonly used in spatial statistics<span><span> and natural science to model coregionalized variables. In this context, the matrix-valued covariance function<span> plays a central role in capturing their spatial continuity and interdependence. This study aims to contribute to the literature on covariance modeling by proposing new parametric families of isotropic matrix-valued functions exhibiting non-monotonic behaviors, namely hole effects and cross-dimples. The benefit of the proposed models is shown on a </span></span>bivariate data set consisting of concentrations of airborne particulate matter.</span></p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138396036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic properties of hierarchical clustering in high-dimensional settings 高维环境下层次聚类的渐近性质
IF 1.6 3区 数学
Journal of Multivariate Analysis Pub Date : 2023-11-14 DOI: 10.1016/j.jmva.2023.105251
Kento Egashira , Kazuyoshi Yata , Makoto Aoshima
{"title":"Asymptotic properties of hierarchical clustering in high-dimensional settings","authors":"Kento Egashira ,&nbsp;Kazuyoshi Yata ,&nbsp;Makoto Aoshima","doi":"10.1016/j.jmva.2023.105251","DOIUrl":"https://doi.org/10.1016/j.jmva.2023.105251","url":null,"abstract":"<div><p>In this study, three asymptotic behaviors of hierarchical clustering are defined and studied with strict conditions under several asymptotic settings, from large samples to high dimensionality, when having two independent populations. We proceed with the current comprehension of the asymptotic properties of hierarchical clustering in high-dimensional, low-sample-size (HDLSS) settings. For high-dimensional data, the asymptotic properties of hierarchical clustering are demonstrated under mild and practical settings, and we present simulation studies and hierarchical clustering performance discussions. Furthermore, hierarchical clustering was theoretically investigated when both the dimension and sample size approach infinity, and we generalized a latent number of populations considering hierarchical clustering in multiclass HDLSS settings.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X23000970/pdfft?md5=8ddd59ad8fdac0f31ad39835b3a16f61&pid=1-s2.0-S0047259X23000970-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134656717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical performance of quantile tensor regression with convex regularization 凸正则化分位数张量回归的统计性能
IF 1.6 3区 数学
Journal of Multivariate Analysis Pub Date : 2023-11-14 DOI: 10.1016/j.jmva.2023.105249
Wenqi Lu , Zhongyi Zhu , Rui Li , Heng Lian
{"title":"Statistical performance of quantile tensor regression with convex regularization","authors":"Wenqi Lu ,&nbsp;Zhongyi Zhu ,&nbsp;Rui Li ,&nbsp;Heng Lian","doi":"10.1016/j.jmva.2023.105249","DOIUrl":"10.1016/j.jmva.2023.105249","url":null,"abstract":"<div><p><span><span>In this paper, we consider high-dimensional quantile<span> tensor regression using a general convex decomposable regularizer and analyze the statistical performances of the estimator. The rates are stated in terms of the intrinsic dimension of the estimation problem, which is, roughly speaking, the dimension of the smallest subspace that contains the true coefficient. Previously, convex regularized tensor regression has been studied with a least squares loss, Gaussian tensorial predictors and Gaussian errors, with rates that depend on the Gaussian width of a convex set. Our results extend the previous work to nonsmooth quantile loss. To deal with the non-Gaussian setting, we use the concept of </span></span>Rademacher<span><span> complexity with appropriate concentration inequalities instead of the Gaussian width. For the multi-linear nuclear norm penalty, our Orlicz norm bound for the operator norm of a random matrix may be of independent interest. We validate the theoretical guarantees in numerical experiments. We also demonstrate advantage of quantile regression over mean regression, and compare the performance of convex </span>regularization method and nonconvex </span></span>decomposition method in solving quantile tensor regression problem in simulation studies.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135764061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-asymptotic robustness analysis of regression depth median 回归深度中位数的非渐近稳健性分析
IF 1.6 3区 数学
Journal of Multivariate Analysis Pub Date : 2023-11-04 DOI: 10.1016/j.jmva.2023.105247
Yijun Zuo
{"title":"Non-asymptotic robustness analysis of regression depth median","authors":"Yijun Zuo","doi":"10.1016/j.jmva.2023.105247","DOIUrl":"https://doi.org/10.1016/j.jmva.2023.105247","url":null,"abstract":"<div><p>The maximum depth estimator (aka depth median) (<span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>R</mi><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span>) induced from regression depth (RD) of Rousseeuw and Hubert (1999) is one of the most prevailing estimators in regression. It possesses outstanding robustness similar to the univariate location counterpart. Indeed, <span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>R</mi><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span> can, asymptotically, resist up to 33% contamination without breakdown, in contrast to the 0% for the traditional (least squares and least absolute deviations) estimators (see Van Aelst and Rousseeuw (2000)). The results from Van Aelst and Rousseeuw (2000) are pioneering, yet they are limited to regression-symmetric populations (with a strictly positive density), the <span><math><mi>ϵ</mi></math></span>-contamination, maximum-bias model, and in asymptotical sense. With a fixed finite-sample size practice, the most prevailing measure of robustness for estimators is the finite-sample breakdown point (FSBP) (Donoho and Huber, 1983). Despite many attempts made in the literature, only sporadic partial results on FSBP for <span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>R</mi><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span> were obtained whereas an exact FSBP for <span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>R</mi><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span> remained open in the last twenty-plus years. Furthermore, is the asymptotic breakdown value <span><math><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></math></span> (the limit of an increasing sequence of finite-sample breakdown values) relevant in the finite-sample practice? (Or what is the difference between the finite-sample and the limit breakdown values?). Such discussions are yet to be given in the literature. This article addresses the above issues, revealing an intrinsic connection between the regression depth of <span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>R</mi><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span> and the newly obtained exact FSBP. It justifies the employment of <span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>R</mi><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span> as a robust alternative to the traditional estimators and demonstrates the necessity and the merit of using the FSBP in finite-sample real practice.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X23000933/pdfft?md5=41b0163d4b47acc16c5399dda63160ea&pid=1-s2.0-S0047259X23000933-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91987809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On moments of truncated multivariate normal/independent distributions 关于截断多元正态/独立分布的矩
IF 1.6 3区 数学
Journal of Multivariate Analysis Pub Date : 2023-11-02 DOI: 10.1016/j.jmva.2023.105248
Tsung-I Lin , Wan-Lun Wang
{"title":"On moments of truncated multivariate normal/independent distributions","authors":"Tsung-I Lin ,&nbsp;Wan-Lun Wang","doi":"10.1016/j.jmva.2023.105248","DOIUrl":"https://doi.org/10.1016/j.jmva.2023.105248","url":null,"abstract":"<div><p>Multivariate normal/independent (MNI) distributions contain many renowned heavy-tailed distributions such as the multivariate <span><math><mi>t</mi></math></span>, multivariate slash, multivariate contaminated normal, multivariate variance-gamma, and multivariate double exponential distributions. A frequent problem encountered in statistical analysis is the occurrence of truncated observations and non-normality such that theoretical moments are required for the estimation of the truncated multivariate normal/independent (TMNI) distributions. This paper is dedicated to deriving explicit expressions for the moments of the TMNI distributions with supports confined within a hyper-rectangle. A Monte Carlo experiment is undertaken to validate to the correctness of the proposed formulae for five selected members of the TMNI distributions. <span>R</span> scripts and data to reproduce the results are available in the GitHub repository.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X23000945/pdfft?md5=3cb17094e738a982bd8a526ea82d616f&pid=1-s2.0-S0047259X23000945-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91987808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantile-based MANOVA: A new tool for inferring multivariate data in factorial designs 基于分位数的方差分析:在析因设计中推断多变量数据的新工具
IF 1.6 3区 数学
Journal of Multivariate Analysis Pub Date : 2023-10-27 DOI: 10.1016/j.jmva.2023.105246
Marléne Baumeister , Marc Ditzhaus , Markus Pauly
{"title":"Quantile-based MANOVA: A new tool for inferring multivariate data in factorial designs","authors":"Marléne Baumeister ,&nbsp;Marc Ditzhaus ,&nbsp;Markus Pauly","doi":"10.1016/j.jmva.2023.105246","DOIUrl":"https://doi.org/10.1016/j.jmva.2023.105246","url":null,"abstract":"<div><p>Multivariate analysis-of-variance (MANOVA) is a well established tool to examine multivariate endpoints. While classical approaches depend on restrictive assumptions like normality and homogeneity, there is a recent trend to more general and flexible procedures. In this paper, we proceed on this path, but do not follow the typical mean-focused perspective. Instead we consider general quantiles, in particular the median, for a more robust multivariate analysis. The resulting methodology is applicable for all kind of factorial designs and shown to be asymptotically valid. Our theoretical results are complemented by an extensive simulation study for small and moderate sample sizes. An illustrative data analysis is also presented.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X23000921/pdfft?md5=1d25d366a55a9ade017b7d42c7b49a4c&pid=1-s2.0-S0047259X23000921-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91987804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Flexible nonlinear inference and change-point testing of high-dimensional spectral density matrices 高维谱密度矩阵的柔性非线性推理与变点测试
IF 1.6 3区 数学
Journal of Multivariate Analysis Pub Date : 2023-10-21 DOI: 10.1016/j.jmva.2023.105245
Ansgar Steland
{"title":"Flexible nonlinear inference and change-point testing of high-dimensional spectral density matrices","authors":"Ansgar Steland","doi":"10.1016/j.jmva.2023.105245","DOIUrl":"https://doi.org/10.1016/j.jmva.2023.105245","url":null,"abstract":"<div><p>This paper studies a flexible approach to analyze high-dimensional nonlinear time series of unconstrained dimension based on linear statistics calculated from spectral average statistics of bilinear forms and nonlinear transformations of lag-window (i.e. band-regularized) spectral density matrix estimators. That class of statistics includes, among others, smoothed periodograms, nonlinear statistics such as coherency, long-run-variance estimators and contrast statistics related to factorial effects as special cases. Especially, we introduce the class of nonlinear spectral averages of the spectral density matrix. Having in mind big data settings, we study a sampling design which includes a sparse sampling scheme. Gaussian approximations with optimal rate are derived for nonlinear time series of growing dimension for these frequency domain statistics and the underlying lag-window (cross-) spectral estimator under non-stationarity. For change-testing (self-standardized) CUSUM statistics are examined. Further, a specific wild bootstrap procedure is proposed to estimate critical values. Simulation studies and an application to SP500 financial returns are provided in a supplement to this paper.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X2300091X/pdfft?md5=df7e5644d46331b672b17462b8020fb3&pid=1-s2.0-S0047259X2300091X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91987805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large factor model estimation by nuclear norm plus ℓ1 norm penalization 核范数加1范数惩罚的大因子模型估计
IF 1.6 3区 数学
Journal of Multivariate Analysis Pub Date : 2023-10-19 DOI: 10.1016/j.jmva.2023.105244
Matteo Farnè, Angela Montanari
{"title":"Large factor model estimation by nuclear norm plus ℓ1 norm penalization","authors":"Matteo Farnè,&nbsp;Angela Montanari","doi":"10.1016/j.jmva.2023.105244","DOIUrl":"https://doi.org/10.1016/j.jmva.2023.105244","url":null,"abstract":"<div><p>This paper provides a comprehensive estimation framework via nuclear norm plus <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> norm penalization for high-dimensional approximate factor models with a sparse residual covariance. The underlying assumptions allow for non-pervasive latent eigenvalues and a prominent residual covariance pattern. In that context, existing approaches based on principal components may lead to misestimate the latent rank. On the contrary, the proposed optimization strategy recovers with high probability both the covariance matrix components and the latent rank and the residual sparsity pattern. Conditioning on the recovered low rank and sparse matrix varieties, we derive the finite sample covariance matrix estimators with the tightest error bound in minimax sense and we prove that the ensuing estimators of factor loadings and scores via Bartlett’s and Thomson’s methods have the same property. The asymptotic rates for those estimators of factor loadings and scores are also provided.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X23000908/pdfft?md5=728de694d0d649b95d2f5a00e75117a5&pid=1-s2.0-S0047259X23000908-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91987803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tests for equality of several covariance matrix functions for multivariate functional data 多元函数数据的几个协方差矩阵函数的相等性检验
IF 1.6 3区 数学
Journal of Multivariate Analysis Pub Date : 2023-10-06 DOI: 10.1016/j.jmva.2023.105243
Zhiping Qiu , Jiangyuan Fan , Jin-Ting Zhang , Jianwei Chen
{"title":"Tests for equality of several covariance matrix functions for multivariate functional data","authors":"Zhiping Qiu ,&nbsp;Jiangyuan Fan ,&nbsp;Jin-Ting Zhang ,&nbsp;Jianwei Chen","doi":"10.1016/j.jmva.2023.105243","DOIUrl":"https://doi.org/10.1016/j.jmva.2023.105243","url":null,"abstract":"<div><p>Multivariate functional data are often observed in many scientific fields. This paper considers a multi-sample equal-covariance matrix function testing problem for multivariate functional data. Two new tests are proposed and studied. The asymptotic properties of the two tests under the null hypothesis and a local alternative are investigated. Two methods for approximating the null distributions of the test statistics are described. It is shown that the two tests are root-<span><math><mi>n</mi></math></span> consistent. Two simulation studies are conducted to evaluate the finite sample performance of the proposed tests. Finally, the two tests are illustrated via applications to three real multivariate functional data sets.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50195661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The skewness of mean–variance normal mixtures 均方差正态混合物的偏度
IF 1.6 3区 数学
Journal of Multivariate Analysis Pub Date : 2023-09-30 DOI: 10.1016/j.jmva.2023.105242
Nicola Loperfido
{"title":"The skewness of mean–variance normal mixtures","authors":"Nicola Loperfido","doi":"10.1016/j.jmva.2023.105242","DOIUrl":"https://doi.org/10.1016/j.jmva.2023.105242","url":null,"abstract":"<div><p>Mean–variance mixtures of normal distributions are very flexible: they model many nonnormal features, such as skewness, kurtosis and multimodality. Special cases include generalized asymmetric Laplace distributions, mixtures of two normal distributions with proportional covariance matrices, scale mixtures of normal distributions and normal distributions. This paper investigates the skewness of multivariate mean–variance normal mixtures. The special case of mixtures of two normal distributions with proportional covariance matrices is treated in greater detail. The paper derives the analytical forms of prominent measures of multivariate skewness and applies them to model-based clustering, normalizing linear transformations, projection pursuit and normality testing. The practical relevance of the theoretical results is assessed with both real and simulated data.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50195662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信