{"title":"Linearized maximum rank correlation estimation when covariates are functional","authors":"Wenchao Xu , Xinyu Zhang , Hua Liang","doi":"10.1016/j.jmva.2024.105301","DOIUrl":null,"url":null,"abstract":"<div><p>This paper extends the linearized maximum rank correlation (LMRC) estimation proposed by Shen et al. (2023) to the setting where the covariate is a function. However, this extension is nontrivial due to the difficulty of inverting the covariance operator, which may raise the ill-posed inverse problem, for which we integrate the functional principal component analysis to the LMRC procedure. The proposed estimator is robust to outliers in response and computationally efficient. We establish the rate of convergence of the proposed estimator, which is minimax optimal under certain smoothness assumptions. Furthermore, we extend the proposed estimation procedure to handle discretely observed functional covariates, including both sparse and dense sampling designs, and establish the corresponding rate of convergence. Simulation studies demonstrate that the proposed estimators outperform the other existing methods for some examples. Finally, we apply our method to a real data to illustrate its usefulness.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"202 ","pages":"Article 105301"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000083","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper extends the linearized maximum rank correlation (LMRC) estimation proposed by Shen et al. (2023) to the setting where the covariate is a function. However, this extension is nontrivial due to the difficulty of inverting the covariance operator, which may raise the ill-posed inverse problem, for which we integrate the functional principal component analysis to the LMRC procedure. The proposed estimator is robust to outliers in response and computationally efficient. We establish the rate of convergence of the proposed estimator, which is minimax optimal under certain smoothness assumptions. Furthermore, we extend the proposed estimation procedure to handle discretely observed functional covariates, including both sparse and dense sampling designs, and establish the corresponding rate of convergence. Simulation studies demonstrate that the proposed estimators outperform the other existing methods for some examples. Finally, we apply our method to a real data to illustrate its usefulness.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.